
TianQin Python SDK Documentation
Release 3.4.1

TianQIn

Apr 24, 2023

CONTENTS

1 TqSdk介介介绍绍绍 3
1.1 TqSdk是什么 . 3
1.2 系统架构 . 4
1.3 功能要点 . 4
1.4 编程风格 . 4
1.5 License . 4

2 十十十分分分钟钟钟快快快速速速入入入门门门 5
2.1 安装 . 5
2.2 注册信易账户 . 6
2.3 获取实时行情数据 . 6
2.4 使用K线数据 . 7
2.5 生成图形化界面 . 7
2.6 交易账户,下单/撤单 . 8
2.7 构建一个自动交易程序 . 9
2.8 按照目标持仓自动交易 . 9
2.9 策略回测 . 10
2.10 实盘交易 . 10
2.11 模拟交易和论坛 . 10
2.12 TqSdk学习视频 . 11
2.13 更多内容 . 11

3 使使使用用用TqSdk 13
3.1 策略程序结构 . 13
3.2 信易账户 . 16
3.3 合约,行情和历史数据 . 17
3.4 技术指标与序列计算函数 . 22
3.5 账户与交易 . 23
3.6 期权交易 &交易所官方组合 . 26
3.7 交易辅助工具 . 27
3.8 策略程序回测 . 29
3.9 策略程序图形化界面 . 34

4 示示示例例例程程程序序序 37
4.1 基本使用 . 37
4.2 期权基本使用 . 53
4.3 算法模块示例 . 60
4.4 交易策略示例 . 60

5 TqSdk模模模块块块参参参考考考 83

i

5.1 tqsdk.TqApi -框架及核心业务 . 84
5.2 tqsdk.TqAuth -用户认证类 . 84
5.3 tqsdk.TqAccount -实盘账户类 . 84
5.4 tqsdk.TqKq -快期模拟交易类 . 84
5.5 tqsdk.TqKqStock -快期股票模拟交易类 . 84
5.6 tqsdk.TqSim -本地模拟交易 . 84
5.7 tqsdk.TqSimStock -本地股票模拟交易 . 84
5.8 tqsdk.TqMultiAccount -多账户 . 84
5.9 tqsdk.objs -业务对象 . 84
5.10 tqsdk.lib -业务工具库 . 84
5.11 tqsdk.ta -技术指标计算函数 . 84
5.12 tqsdk.tafunc -序列计算函数 . 84
5.13 tqsdk.TqBacktest -策略回测 . 84
5.14 tqsdk.algorithm -算法模块 . 84
5.15 tqsdk.risk_rule -风控类模块 . 84
5.16 tqsdk.tools.DataDownloader -数据下载工具 . 84
5.17 tqsdk.exceptions -抛出例外 . 84

6 进进进阶阶阶主主主题题题 85
6.1 高级委托指令 . 85
6.2 批量回测,参数搜索及其它 . 86
6.3 交易策略的多实例运行 . 88
6.4 与Gui库共同工作 . 92
6.5 将程序信息推送到手机端 . 92
6.6 TqSdk与 vn.py有哪些差别 . 93
6.7 TqSdk与使用Ctp接口开发策略程序有哪些差别 . 98
6.8 在无人监控环境下执行策略 . 100
6.9 TargetPosTask高级功能 . 107
6.10 基于时间维度目标持仓策略 . 109
6.11 在 TqSdk中调用 TqSdk2查询保证金 . 111

7 参参参与与与TqSdk开开开发发发 113
7.1 原则与规范 . 113
7.2 TqSdk整体结构 . 114
7.3 异步工具 . 116
7.4 Web Gui . 116
7.5 策略回测框架 . 116
7.6 单元测试 . 116

8 TqSdk专专专业业业版版版 117
8.1 更稳定的行情服务器 . 117
8.2 更多的实盘交易账户数 . 117
8.3 策略回测功能 . 117
8.4 股票行情 . 119
8.5 股票模拟交易 . 119
8.6 下载数据功能 . 120
8.7 其他相关函数 . 120
8.8 期权交易 &交易所组合 . 120
8.9 工作时间内的天勤客服支持 . 120

9 TqSdk2企企企业业业版版版 121
9.1 TqSdk2直连功能 . 121
9.2 TqSdk2连接资管平台功能 . 121

10 天天天勤勤勤用用用户户户论论论坛坛坛 123

ii

11 版版版本本本变变变更更更 125

iii

iv

TianQin Python SDK Documentation, Release 3.4.1

本文档是 TqSdk的使用说明. 从 TqSdk中的一些关键概念开始,逐步介绍如何充分利用 TqSdk全部功能。

CONTENTS 1

TianQin Python SDK Documentation, Release 3.4.1

2 CONTENTS

CHAPTER

ONE

TQSDK介介介绍绍绍

1.1 TqSdk是是是什什什么么么

TqSdk是一个由信易科技发起并贡献主要代码的开源 python库.依托快期多年积累成熟的交易及行情服务
器体系 , TqSdk支持用户使用很少的代码量构建各种类型的量化交易策略程序,并提供包含历史数据-实时数
据-开发调试-策略回测-模拟交易-实盘交易-运行监控-风险管理的全套解决方案:

from tqsdk import TqApi, TqAuth, TqAccount, TargetPosTask

api = TqApi(TqAccount("H海通期货", "4003242", "123456"), auth=TqAuth("信易账户", "账户密码
→˓")) # 创建 TqApi 实例, 指定交易账户
q_1910 = api.get_quote("SHFE.rb1910") # 订阅近月合约行情
t_1910 = TargetPosTask(api, "SHFE.rb1910") # 创建近月合约调仓工具
q_2001 = api.get_quote("SHFE.rb2001") # 订阅远月合约行情
t_2001 = TargetPosTask(api, "SHFE.rb2001") # 创建远月合约调仓工具

while True:
api.wait_update() # 等待数据更新
spread = q_1910.last_price - q_2001.last_price # 计算近月合约-远月合约价差
print("当前价差:", spread)
if spread > 250:

print("价差过高: 空近月，多远月")
t_1910.set_target_volume(-1) # 要求把1910合约调整为空

头1手
t_2001.set_target_volume(1) # 要求把2001合约调整为多

头1手
elif spread < 200:

print("价差回复: 清空持仓") # 要求把 1910 和 2001合约都调
整为不持仓

t_1910.set_target_volume(0)
t_2001.set_target_volume(0)

要快速了解如何使用TqSdk,可以访问我们的十分钟快速入门

3

https://www.shinnytech.com
https://www.shinnytech.com/diff
https://www.shinnytech.com/diff

TianQin Python SDK Documentation, Release 3.4.1

1.2 系系系统统统架架架构构构

• 行情网关 (Open Md Gateway)负责提供实时行情和历史数据

• 交易中继网关 (Open Trade Gateway)负责连接到期货公司交易系统

• 这两个网关统一以 Diff协议对下方提供服务

• TqSdk按照Diff协议连接到行情网关和交易中继网关,实现行情和交易功能

1.3 功功功能能能要要要点点点

TqSdk提供的功能可以支持从简单到复杂的各类策略程序.

• 提供当前所有可交易合约从上市开始的全全全部部部Tick数数数据据据和和和K线线线数数数据据据

• 支持数十家期货公司的实实实盘盘盘交交交易易易

• 支持模模模拟拟拟交交交易易易

• 支持 Tick级级级和和和K线线线级级级回回回测测测,支持复复复杂杂杂策策策略略略回回回测测测

• 提供近百个技技技术术术指指指标标标函函函数数数及及及源源源码码码

• 用户无须建立和维护数据库,行情和交易数据全在内内内存存存数数数据据据库库库 ,无访问延迟

• 优化支持 pandas和 numpy库

• 无强制框架结构,支持任意复杂度的策略,在一个交易策略程序中使用多个品种的K线/实时行情并交易
多个品种

1.4 编编编程程程风风风格格格

TqSdk使用单线程异步模型, 它支持构建各类复杂结构的策略程序, 同时保持高性能及高可读性. 要了解
TqSdk的编程框架,请参见策略程序结构

如果您曾经使用并熟悉过其它量化交易开发工具,这些文件可以帮助您尽快了解TqSdk与它们的差异:

• TqSdk与使用Ctp接口开发策略程序有哪些差别

• TqSdk与 vn.py有哪些差别

1.5 License

TqSdk在 Apache License 2.0协议下提供,使用者可在遵循此协议的前提下自由使用本软件.

4 Chapter 1. TqSdk介介介绍绍绍

https://github.com/shinnytech/open-md-gateway
https://github.com/shinnytech/open-trade-gateway
https://doc.shinnytech.com/diff/latest

CHAPTER

TWO

十十十分分分钟钟钟快快快速速速入入入门门门

希望快速开始使用天勤量化(TqSdk)？本页面将介绍如何开始使用 TqSdk.

如果您以前曾经使用过其它框架编写过策略程序,这些内容可以快速帮助您了解 TqSdk与它们的区别:

• TqSdk介绍

• TqSdk与使用Ctp接口开发策略程序有哪些差别

• TqSdk与 vn.py有哪些差别

注意: TqSdk使用了 python3的原生协程和异步通讯库 asyncio，部分 Python IDE不支持 asyncio，例如:

• spyder: 详见 https://github.com/spyder-ide/spyder/issues/7096

• jupyter: 详见 https://github.com/jupyter/notebook/issues/3397

可以直接运行示例代码，或使用支持 asyncio的 IDE (例如: pycharm / vscode)

2.1 安安安装装装

天勤量化的核心是TqSdk开发包,在安装天勤量化 (TqSdk)前,你需要先准备适当的环境和Python包管理工具,
包括:

• Python >=3.6.4,3.7,3.8,3.9版本

• Windows 7以上版本, Mac Os,或 Linux

你可以选择使用 pip命令安装 TqSdk,或者下载源代码安装.对于一般用户,我们推荐采用 pip命令安装/升级
TqSdk:

pip install tqsdk -U

但是由于 pip使用的是国外的服务器，普通用户往往下载速度过慢或不稳定，对于使用 pip命令下载速度较
慢的用户，我们推荐采用切换国内源的方式安装/升级 TqSdk:

pip install tqsdk -U -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host=pypi.
→˓tuna.tsinghua.edu.cn

5

https://github.com/spyder-ide/spyder/issues/7096
https://github.com/jupyter/notebook/issues/3397

TianQin Python SDK Documentation, Release 3.4.1

2.2 注注注册册册信信信易易易账账账户户户

在使用 TqSdk之前，用户需要先注册自己的信信信易易易账账账户户户，传入信易账户是使用任何 TqSdk程序的前提,点击
注册信易账户

信易账户可以使用注册时的手机号/用户名/邮箱号进行登录,详细介绍请点击信易账户

在注册完信易账户后，让我们从一个简单的例子开始

2.3 获获获取取取实实实时时时行行行情情情数数数据据据

通过 TqSdk获取实时行情数据是很容易的.

首先,必须引入 tqsdk模块:

from tqsdk import TqApi, TqAuth

创建API实例，并填入自己的信易账户:

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

获得上期所 ni2206合约的行情引用:

quote = api.get_quote("SHFE.ni2206")

现在,我们获得了一个对象 quote. 这个对象总是指向 SHFE.ni2206合约的最新行情.我们可以通过 quote的各
个字段访问行情数据:

print (quote.last_price, quote.volume)

要等待行情数据更新,我们还需要一些代码:

while True:
api.wait_update()
print (quote.datetime, quote.last_price)

wait_update()是一个阻塞函数,程序在这行上等待,直到收到数据包才返回.

上面这个例子的完整程序请见 t10 - 获取实时行情 . 你也可以在自己电脑python安装目录的
site_packages/tqsdk/demo下找到它

很简单,对吗? 到这里,你已经了解用 TqSdk开发程序的几个关键点:

• 创建 TqApi实例

• 用 api.get_quote()或其它函数获取数据引用对象

• 在循环中用 api.wait_update()等待数据包.

• 收到数据包以后通过引用对象获得所需数据

下面我们将继续介绍 TqSdk更多的功能. 无论使用哪个功能函数,都遵循上面的结构.

6 Chapter 2. 十十十分分分钟钟钟快快快速速速入入入门门门

https://account.shinnytech.com/

TianQin Python SDK Documentation, Release 3.4.1

2.4 使使使用用用K线线线数数数据据据

你很可能会需要合约的K线数据. 在TqSdk中,你可以很方便的获得K线数据. 我们来请求 ni2206合约的10秒
线:

klines = api.get_kline_serial("SHFE.ni2206", 10)

klines是一个pandas.DataFrame对象. 跟 api.get_quote() 一样, api.get_kline_serial() 也是返回K线序列的引用对
象. K线序列数据也会跟实时行情一起同步自动更新. 你也同样需要用 api.wait_update()等待数据刷新.

一旦k线数据收到,你可以通过 klines访问 k线数据:

while True:
api.wait_update()
print("最后一根K线收盘价", klines.close.iloc[-1])

这部分的完整示例程序请见 t30 -使用K线/Tick数据 .

我们也可以通过传入一个合约列表作为参数，来获取包含多个合约数据的K线:

klines = api.get_kline_serial(["SHFE.au1912", "SHFE.au2006"], 5) # 获取SHFE.
→˓au2006向SHFE.au1912对齐的K线

详细使用方法及说明请见 get_kline_serial()函数说明。

到这里为止,你已经知道了如何获取实时行情和K线数据,下面一段将介绍如何访问你的交易账户并发送交易
指令

2.5 生生生成成成图图图形形形化化化界界界面面面

如果想要将你订阅的K线或策略图形化显示,只需在 TqApi()中传入参数 web_gui = True即可:

引入TqSdk模块
from tqsdk import TqApi, TqAuth
创建api实例，设置web_gui=True生成图形化界面
api = TqApi(web_gui=True, auth=TqAuth("信易账户", "账户密码"))
订阅 ni2010 合约的10秒线
klines = api.get_kline_serial("SHFE.ni2010", 10)
while True:

通过wait_update刷新数据
api.wait_update()

当你运行该程序后，预期会显示如下两条信息:

2019-12-13 10:45:26,468 - INFO - 您可以访问 http://127.0.0.1:62964 查看策略绘制出的 K 线图
形。
2019-12-13 10:45:27,422 - INFO - 通知: 与 wss://openmd.shinnytech.com/t/md/front/
→˓mobile 的网络连接已建立

点击生成的地址，即可访问订阅的K线图形

具体请见策略程序图形化界面

2.4. 使使使用用用K线线线数数数据据据 7

TianQin Python SDK Documentation, Release 3.4.1

2.6 交交交易易易账账账户户户,下下下单单单/撤撤撤单单单

要获得你的账户资金情况,可以请求一个资金账户引用对象:

account = api.get_account()

要获得你交易账户中某个合约的持仓情况,可以请求一个持仓引用对象:

position = api.get_position("DCE.m1901")

与行情数据一样,它们也通过 api.wait_update()获得更新,你也同样可以访问它们的成员变量:

print("可用资金: %.2f" % (account.available))
print("今多头: %d 手" % (position.volume_long_today))

要在交易账户中发出一个委托单,使用 api.insert_order()函数:

order = api.insert_order(symbol="DCE.m2105", direction="BUY", offset="OPEN", volume=5,
→˓ limit_price=3000)

这个函数调用后会立即返回, order是一个指向此委托单的引用对象,你总是可以通过它的成员变量来了解委
托单的最新状态:

print("委托单状态: %s, 已成交: %d 手" % (order.status, order.volume_orign - order.volume_
→˓left))

要撤销一个委托单,使用 api.cancel_order()函数:

api.cancel_order(order)

这部分的完整示例程序请见 t40 -下单/撤单 .

到这里为止,我们已经掌握了 TqSdk中行情和交易相关功能的基本使用. 我们将在下一节中,组合使用它们,
创建一个自动交易程序

8 Chapter 2. 十十十分分分钟钟钟快快快速速速入入入门门门

TianQin Python SDK Documentation, Release 3.4.1

2.7 构构构建建建一一一个个个自自自动动动交交交易易易程程程序序序

在这一节中,我们将创建一个简单的自动交易程序:每当行情最新价高于最近15分钟均价时,开仓买进.这个程
序是这样的:

klines = api.get_kline_serial("DCE.m2105", 60)
while True:

api.wait_update()
if api.is_changing(klines):

ma = sum(klines.close.iloc[-15:])/15
print("最新价", klines.close.iloc[-1], "MA", ma)
if klines.close.iloc[-1] > ma:

print("最新价大于MA: 市价开仓")
api.insert_order(symbol="DCE.m2105", direction="BUY", offset="OPEN",

→˓volume=5)

上面的代码中出现了一个新函数 api.is_changing(). 这个函数用于判定指定对象是否在最近一次 wait_update
中被更新.

这部分的完整示例程序请见 t60 -单均线策略 .

2.8 按按按照照照目目目标标标持持持仓仓仓自自自动动动交交交易易易

在某些场景中,我们可能会发现,自己写代码管理下单撤单是一件很麻烦的事情.在这种情况下,你可以使用
tqsdk.TargetPosTask. 你只需要指定账户中预期应有的持仓手数, TqSdk会自动通过一系列指令调整仓
位直到达成目标. 请看例子:

创建 ni2010 的目标持仓 task，该 task 负责调整 ni2010 的仓位到指定的目标仓位
target_pos_near = TargetPosTask(api, "SHFE.ni2010")
创建 ni2011 的目标持仓 task，该 task 负责调整 ni2011 的仓位到指定的目标仓位
target_pos_deferred = TargetPosTask(api, "SHFE.ni2011")

while True:
api.wait_update()
if api.is_changing(quote_near) or api.is_changing(quote_deferred):

spread = quote_near.last_price - quote_deferred.last_price
print("当前价差:", spread)
if spread > 200:

print("目标持仓: 空近月，多远月")
设置目标持仓为正数表示多头，负数表示空头，0表示空仓
target_pos_near.set_target_volume(-1)
target_pos_deferred.set_target_volume(1)

elif spread < 150:
print("目标持仓: 空仓")
target_pos_near.set_target_volume(0)
target_pos_deferred.set_target_volume(0)

这部分的完整示例程序请见 t80 -价差回归策略 .

2.7. 构构构建建建一一一个个个自自自动动动交交交易易易程程程序序序 9

TianQin Python SDK Documentation, Release 3.4.1

2.9 策策策略略略回回回测测测

自己的交易程序写好以后,我们总是希望在实盘运行前,能先进行一下模拟测试.要进行模拟测试,只需要在创
建TqApi实例时,传入一个backtest参数:

api = TqApi(backtest=TqBacktest(start_dt=date(2018, 5, 1), end_dt=date(2018, 10, 1)),
→˓auth=TqAuth("信易账户", "账户密码"))

这样,程序运行时就会按照 TqBacktest指定的时间范围进行模拟交易测试,并输出测试结果.

此外 TqSdk同时还支持股票的回测交易，请见对股票合约进行回测

更多关于策略程序回测的详细信息,请见策略程序回测

2.10 实实实盘盘盘交交交易易易

要让策略程序在实盘账号运行,请在创建TqApi时传入一个 TqAccount ,填入期货公司,账号,密码和信易账
户信息(使用前请先 import TqAccount):

from tqsdk import TqApi, TqAuth, TqAccount

api = TqApi(TqAccount("H海通期货", "412432343", "123456"), auth=TqAuth("信易账户", "账户密
码"))

更多关于实盘交易细节，请点击账户与交易

目前支持的期货公司列表,请点击查看: TqSdk支持的期货公司列表

注册信易账户，请点击登录用户管理中心

2.11 模模模拟拟拟交交交易易易和和和论论论坛坛坛

如果您需要使用能保存账户资金及持仓信息的模拟交易功能,请点击注册信易账号，填写完对应信息之后，
并验证成功即可进入用户论坛 .

刚刚注册完成的信易账户的【手机号】/【邮箱地址】/【用户名】和【密码】可以作为 快期模拟账号，通
过 TqKq对 auth传入参数进行登录，这个快期模拟账户在快期APP、快期V3 pro和天勤量化上是互通的

快期模拟的资金可以通过快期APP、快期专业版的模拟银行进行出入金:

from tqsdk import TqApi, TqAuth, TqKq

api = TqApi(TqKq(), auth=TqAuth("信易账户", "账户密码"))

特别的，如果创建TqApi实例时没有提供任何 TqAcccount账户或 TqKq模块，则每次会自动创建一个临时模
拟账号，当程序运行结束时，临时账号内的记录将全部丢失:

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

10 Chapter 2. 十十十分分分钟钟钟快快快速速速入入入门门门

https://www.shinnytech.com/blog/tq-support-broker/
https://www.shinnytech.com/register-intro/
https://www.shinnytech.com/register-intro/
https://www.shinnytech.com/qa

TianQin Python SDK Documentation, Release 3.4.1

2.12 TqSdk学学学习习习视视视频频频

TqSdk提供简单易懂的十分钟上手视频供用户学习

2.13 更更更多多多内内内容容容

• 要完整了解TqSdk的使用,请阅读使用TqSdk

• 更多TqSdk的示例,请见交易策略示例

2.12. TqSdk学学学习习习视视视频频频 11

https://www.shinnytech.com/tqsdkquickstart/

TianQin Python SDK Documentation, Release 3.4.1

12 Chapter 2. 十十十分分分钟钟钟快快快速速速入入入门门门

CHAPTER

THREE

使使使用用用TQSDK

3.1 策策策略略略程程程序序序结结结构构构

3.1.1 TqApi

tqsdk.TqApi是 TqSdk的核心类. 通常情况下,每个使用了 TqSdk的程序都应该包括一一一个个个 TqApi实例:

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

TqApi实例负责:

• 建立websocket连接到服务器.

• 在内存中建立数据存储区,接收行情和交易业务数据包,并自动维护数据更新.

• 发出交易指令.

• 管理协程任务.

• 执行策略回测.

TqApi创建时,需要提供一个account参数. 它可以是:

• 一个 tqsdk.TqAccount实例:使用实盘帐号,直连行情和交易服务器,需提供期货公司/帐号/密码

• 一个 tqsdk.TqSim实例:使用 Api自带的模拟功能,直连行情服务器接收行情数据

• 如果未提供 account参数,或者 account == None,则会自动创建并使用一个 tqsdk.TqSim实例

此外还需要传入用户的信易账户，参见信易账户

TqApi的其它构建参数请见 tqsdk.TqApi

3.1.2 关关关键键键函函函数数数: wait_update

wait_update()是 TqApi中最重要的一个函数. 每次调用 wait_update()函数时将发生这些事:

• 实际发出网络数据包. 例如,策略程序用 insert_order函数下单,实际的报单指令是在 insert_order后调用
wait_update()时发出的

• 让正在运行中的后台任务获得动作机会．例如,策略程序中创建了一个后台调仓任务,这个任务只会在
wait_update()时发出交易指令

• 尝试从服务器接收一个数据包,并用收到的数据包更新内存中的业务数据截面.

• 如果没有收到数据包，则挂起等待，如果要避免长时间挂起，可通过设置 wait_update() 中
的deadline参数，设置等待截止时间

13

TianQin Python SDK Documentation, Release 3.4.1

14 Chapter 3. 使使使用用用TqSdk

TianQin Python SDK Documentation, Release 3.4.1

因此, TqSdk 要求策略程序必须反复调用 wait_update(), 才能保证整个程序正常运行. 一般会将
wait_update()放在一个循环中反复调用（注: 若跳出循环，程序结束前需调用 api.close()释放资源):

while True: #一个循环
api.wait_update() #总是调用 wait_update, 当数据有更新时 wait_update 函数返回, 执行下一

句
do_some_thing() #每当数据有变更时, 执行自己的代码, 然后循环回去再做下一次 wait_update

#注：若跳出循环并运行到程序末尾，在结束运行前需调用 api.close() 函数以关闭天勤接口实例并释放相应资
源，请见下文 “一个典型程序的结构”

3.1.3 内内内存存存数数数据据据及及及数数数据据据更更更新新新

TqApi实例内存中保存了一份完整业务数据截面,包括行情/K线和交易账户数据. 这些数据可以通过 TqApi
提供的数据引用函数获取，以获取资金账户为例:

account = api.get_account() # 获取账户信息引用
print(account.balance) # 显示账户信息

值得注意的是, get_account返回资金账户的一个动态引用,而不是具体的数值. 因此只需调用一次 get_account
得到 account引用，之后任何时刻都可以使用 account.balance获得最新的账户权益.当 wait_update()函
数返回时业务截面即完成了从上一个时间截面推进到下一个时间截面。

wait_update()会在任何数据更新时返回.如果想知道 wait_update()到底更新了哪些业务数据可以调
用 is_changing()函数判断感兴趣的业务对象是否有更新，例如:

if api.is_changing(account):
print("账户变化") #任何资金账户中任意信息变化的时候打出 "账户变化"

if api.is_changing(account, "balance"):
print("账户权益变化") #只有资金账户中的权益值变化的时候打出 "账户权益变化

→˓"

建建建议议议跨跨跨交交交易易易日日日重重重启启启代代代码码码 ,否否否则则则可可可能能能导导导致致致:

1. 合约信息不能及时更新（如：有新上市的合约,保持登录的第二个交易日就没有这个合约信息)

2. 前一交易日的未成交委托单没有删除更新

3. 如果使用了交易辅助工具 TargetPosTask并且收盘后有挂单，导致 TargetPosTask在下一交易日无
法继续执行

4. 其他未知问题.

3.1.4 一一一个个个典典典型型型程程程序序序的的的结结结构构构

以一个通常的策略流程为例：判断开仓条件，开仓，判断平仓条件，平仓，使用 TqSdk写出的代码:

from tqsdk import TqApi, TqAuth, TqSim, TargetPosTask

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("SHFE.rb1901", 60)
position = api.get_position("SHFE.rb1901")
target_pos = TargetPosTask(api, "SHFE.rb1901")

while True: #判断开仓条件的主循环

(continues on next page)

3.1. 策策策略略略程程程序序序结结结构构构 15

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

api.wait_update() #等待业务数据更新
if 开仓条件:

target_pos.set_target_volume(1) #如果触发了，则通过 target_
→˓pos 将 SHFE.rb1901 的目标持仓设置为多头 1 手，具体的调仓工作则由 target_pos 在后台完成

break #跳出开仓循环，进入下面的平仓循
环

while True: #判断平仓条件的主循环
api.wait_update()
if 平仓条件:

target_pos.set_target_volume(0) #如果触发了，则通过 target_
→˓pos 将 SHFE.rb1901 的目标持仓设置为0手(即空仓)

if position.pos == 0: #如果已经将仓位平掉则跳出循环
break

api.close() #注意：程序结束运行前需调用此函
数以关闭天勤接口实例并释放相应资源，同时此函数会包含发送最后一次wait_update信息传输
#至此就完成一次完整的开平仓流程，如果平仓后还需再判断开仓条件可以把开仓循环和平仓循环再套到一个大循环
中。

3.2 信信信易易易账账账户户户

在使用 TqSdk之前，用户需要先注册自己的信信信易易易账账账户户户，传入信易账户是使用任何 TqSdk程序的前提

如需注册，请点击注册信易账户

from tqsdk import TqApi, TqAuth
api = TqApi(auth=TqAuth("信易账户", "账户密码"))

3.2.1 用用用信信信易易易账账账户户户来来来模模模拟拟拟交交交易易易

注册完成的信易账户的【手机号】/【邮箱地址】/【用户名】和【密码】可以作为 快期模拟 账号，通过
TqKq对 auth传入参数进行登录，这个快期模拟账户在快期APP、快期专业版和天勤量化上是互通的:

from tqsdk import TqApi, TqAuth, TqKq
api = TqApi(TqKq(), auth=TqAuth("信易账户", "账户密码"))

3.2.2 用用用信信信易易易账账账户户户来来来实实实盘盘盘交交交易易易

对于 TqSdk免费版，每个信易账户支持最多绑定一个实盘账户，而天勤量化专业版支持一个信易账户绑定
任意多个实盘账户

信易账户会在用户使用实盘账户时自动进行绑定，直到该信易账户没有能绑定实盘账户的名额(自动绑定功
能需要 TqSdk版本> 1.8.3):

from tqsdk import TqApi, TqAccount, TqAuth, TqKq
api = TqApi(TqAccount("H海通期货", "320102", "123456"), auth=TqAuth("信易账户", "账户密码
→˓"))

如果需要注册信易账户或者修改您的信易账户绑定的实盘账户请参见登录用户管理中心

16 Chapter 3. 使使使用用用TqSdk

https://account.shinnytech.com/

TianQin Python SDK Documentation, Release 3.4.1

3.2.3 登登登录录录用用用户户户管管管理理理中中中心心心

点击登录用户管理中心，可以注册信易账户或者修改您的信易账户绑定的实盘账户

登录成功后显示如下，在下方红框处,用户可以自行解绑/绑定实盘账户，其中解绑操作每天限定一次

如需一个信易账户支持更多的实盘账户，请联系工作人员进行批量购买天勤量化专业版

3.3 合合合约约约,行行行情情情和和和历历历史史史数数数据据据

3.3.1 合合合约约约代代代码码码

TqSdk中的合约代码,统一采用交易所代码.交易所内品种代码的格式. 交易所代码为全大写字母,交易所内品
种代码的大小写规范,遵从交易所规定,大小写敏感.

其中 TqSdk免费版本提供全部的期货、商品/金融期权和上证50、沪深300、中证500和中证1000的实时行情

购买或申请 TqSdk专业版试用后可提供A股股票的实时和历史行情，具体免费版和专业版的区别，请点击
天勤量化专业版

目前 TqSdk支持的交易所包括:

CODE NAME
SHFE 上海期货交易所

DCE 大连商品交易所

CZCE 郑州商品交易所
CFFEX 中国金融交易所

INE 上海能源中心(原油在这里)
KQ 快期 (所有主连合约,指数都归属在这里)
SSWE 上期所仓单
SSE 上海证券交易所
SZSE 深圳证券交易所
GFEX 广州期货交易所

3.3. 合合合约约约,行行行情情情和和和历历历史史史数数数据据据 17

https://www.shinnytech.com/register-intro/
https://www.shinnytech.com/tqsdk_professional/
https://www.shinnytech.com/tqsdk_professional/

TianQin Python SDK Documentation, Release 3.4.1

一些合约代码示例:

SHFE.cu1901 - 上期所 cu1901 期货合约
DCE.m1901 - 大商所 m1901 期货合约
CZCE.SR901 - 郑商所 SR901 期货合约
CFFEX.IF1901 - 中金所 IF1901 期货合约
INE.sc2109 - 上期能源 sc2109 期货合约
GFEX.si2301 - 广期所 si2301 期货合约

CZCE.SPD SR901&SR903 - 郑商所 SR901&SR903 跨期合约
DCE.SP a1709&a1801 - 大商所 a1709&a1801 跨期合约
GFEX.SP si2308&si2309 - 广期所 si2308&si2309 跨期组合

DCE.m1807-C-2450 - 大商所豆粕期权
CZCE.CF003C11000 - 郑商所棉花期权
SHFE.au2004C308 - 上期所黄金期权
CFFEX.IO2002-C-3550 - 中金所沪深300股指期权
INE.sc2109C450 - 上期能源原油期权
GFEX.si2308-C-5800 - 广期所硅期权

KQ.m@CFFEX.IF - 中金所IF品种主连合约
KQ.i@SHFE.bu - 上期所bu品种指数

SSWE.CUH - 上期所仓单铜现货数据

SSE.600000 - 上交所浦发银行股票编码
SZSE.000001 - 深交所平安银行股票编码
SSE.000016 - 上证50指数
SSE.000300 - 沪深300指数
SSE.000905 - 中证500指数
SSE.000852 - 中证1000指数
SSE.510050 - 上交所上证50ETF
SSE.510300 - 上交所沪深300ETF
SZSE.159919 - 深交所沪深300ETF
SSE.10002513 - 上交所上证50ETF期权
SSE.10002504 - 上交所沪深300ETF期权
SZSE.90000097 - 深交所沪深300ETF期权
SZSE.159915 - 易方达创业板ETF
SZSE.90001277 - 创业板ETF期权
SZSE.159922 - 深交所中证500ETF
SZSE.90001355 - 深交所中证500ETF期权
SSE.510500 - 上交所中证500ETF
SSE.10004497 - 上交所中证500ETF期权
SZSE.159901 - 深交所100ETF

注注注意意意：：：并并并非非非所所所有有有合合合约约约都都都是是是可可可交交交易易易合合合约约约.

需要注意郑商所的期货合约格式为合约字母大写，并且只有三位数字位，同时不同家交易所的期权代码格
式也各不相同

天勤指数的计算方式为根据在市期货合约的昨持仓量加权平均

天勤主力的选定标准为该合约持仓量和成交量均为最大后，在下一个交易日开盘后进行切换，且切换后不
会再切换到之前的合约

18 Chapter 3. 使使使用用用TqSdk

TianQin Python SDK Documentation, Release 3.4.1

3.3.2 实实实时时时行行行情情情

get_quote()函数提供实时行情和合约信息:

q = api.get_quote("SHFE.cu2201")

返回值为一个dict,结构如下:

{
"datetime": "2021-08-17 14:59:59.000001", # 行情从交易所发出的时间(北京时间)
"ask_price1": 69750.0, # 卖一价
"ask_volume1": 1, # 卖一量
"bid_price1": 69600.0, # 买一价
"bid_volume1": 2, # 买一量
"ask_price2": 69920.0, # 卖二价
"ask_volume2": 3, # 卖二量
"bid_price2": 69500.0, # 买二价
"bid_volume2": 3, # 买二量
"ask_price3": 69940.0, # 卖三价
"ask_volume3": 1, # 卖三量
"bid_price3": 69450.0, # 买三价
"bid_volume3": 1, # 买三量
"ask_price4": 70010.0, # 卖四价
"ask_volume4": 1, # 卖四量
"bid_price4": 69400.0, # 买四价
"bid_volume4": 1, # 买四量
"ask_price5": 70050.0, # 卖五价
"ask_volume5": 1, # 卖五量
"bid_price5": 69380.0, # 买五价
"bid_volume5": 1, # 买五量
"last_price": 69710.0, # 最新价
"highest": 70050.0, # 当日最高价
"lowest": 69520.0, # 当日最低价
"open": 69770.0, # 开盘价
"close": 69710.0, # 收盘价
"average": 69785.019711, # 当日均价
"volume": 761, # 成交量
"amount": 265532000.0, # 成交额
"open_interest": 8850, # 持仓量
"settlement": 69780.0, # 结算价
"upper_limit": 75880.0, # 涨停价
"lower_limit": 64630.0, # 跌停价
"pre_open_interest": 8791, # 昨持仓量
"pre_settlement": 70260.0, # 昨结算价
"pre_close": 69680.0, # 昨收盘价
"price_tick": 10.0, # 合约价格变动单位
"price_decs": 0, # 合约价格小数位数
"volume_multiple": 5.0, # 合约乘数
"max_limit_order_volume": 500, # 最大限价单手数
"max_market_order_volume": 0, # 最大市价单手数
"min_limit_order_volume": 0, # 最小限价单手数
"min_market_order_volume": 0, # 最小市价单手数
"underlying_symbol": "", # 标的合约
"strike_price": NaN, # 行权价
"ins_class": "FUTURE", # 合约类型
"instrument_id": "SHFE.cu2201", # 合约代码
"instrument_name": "沪铜2201", # 合约中文名
"exchange_id": "SHFE", # 交易所代码

(continues on next page)

3.3. 合合合约约约,行行行情情情和和和历历历史史史数数数据据据 19

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

"expired": false, # 合约是否已下市
"trading_time": "{'day': [['09:00:00', '10:15:00'], ['10:30:00', '11:30:00'], [

→˓'13:30:00', '15:00:00']], 'night': [['21:00:00', '25:00:00']]}", # 交易时间段
"expire_datetime": 1642402800.0, # 到期具体日，以秒为单位的 timestamp 值
"delivery_year": 2022, # 期货交割日年份，只对期货品种有效。期权推荐使用最后行权日年份
"delivery_month": 1, # 期货交割日月份，只对期货品种有效。期权推荐使用最后行权日月份
"last_exercise_datetime": NaN, # 期权最后行权日，以秒为单位的 timestamp 值
"exercise_year": 0, # 期权最后行权日年份，只对期权品种有效。
"exercise_month": 0, # 期权最后行权日月份，只对期权品种有效。
"option_class": "", # 期权行权方式，看涨:'CALL'，看跌:'PUT'
"exercise_type": "", # 期权行权方式，美式:'A'，欧式:'E'
"product_id": "cu", # 品种代码
"iopv": NaN, # ETF实时单位基金净值
"public_float_share_quantity": 0, # 日流通股数，只对证券产品有效。
"stock_dividend_ratio": [], # 除权表 ["20190601,0.15","20200107,0.2"...]
"cash_dividend_ratio": [], # 除息表 ["20190601,0.15","20200107,0.2"...]
"expire_rest_days": 153, # 距离到期日的剩余天数（自然日天数），正数表示距离到期日的剩余天

数，0表示到期日当天，负数表示距离到期日已经过去的天数
"commission": 17.565,
"margin": 31617.0

}

对于每个合约,只需要调用一次 get_quote函数. 如果需要监控数据更新,可以使用 wait_update():

q = api.get_quote("SHFE.cu1812") # 获取SHFE.cu1812合约的行情

while api.wait_update():
print(q.last_price) # 收到新行情时都会执行这行

3.3.3 K线线线数数数据据据

get_kline_serial()函数获取指定合约和周期的K线序列数据:

klines = api.get_kline_serial("SHFE.cu1812", 10) # 获取SHFE.cu1812合约的10秒K线

获取按照时间对齐的多合约K线:

klines = api.get_kline_serial(["SHFE.au1912", "SHFE.au2006"], 5) # 获取SHFE.
→˓au2006向SHFE.au1912对齐的K线

详细使用方法及说明请见 get_kline_serial()函数使用说明。

get_kline_serial()的返回值是一个 pandas.DataFrame,包含以下列:

id: 1234 (k线序列号)
datetime: 1501080715000000000 (K线起点时间(按北京时间)，自unix epoch(1970-01-01 00:00:00
→˓GMT)以来的纳秒数)
open: 51450.0 (K线起始时刻的最新价)
high: 51450.0 (K线时间范围内的最高价)
low: 51450.0 (K线时间范围内的最低价)
close: 51450.0 (K线结束时刻的最新价)
volume: 11 (K线时间范围内的成交量)
open_oi: 27354 (K线起始时刻的持仓量)
close_oi: 27355 (K线结束时刻的持仓量)

要使用K线数据,请使用 pandas.DataFrame的相关函数. 常见用法示例如下:

20 Chapter 3. 使使使用用用TqSdk

TianQin Python SDK Documentation, Release 3.4.1

klines.iloc[-1].close # 最后一根K线的收盘价
klines.close # 收盘价序列, 一个 pandas.Serial

TqSdk中, K线周期以秒数表示，支持不超过1日的任意周期K线，例如:

api.get_kline_serial("SHFE.cu1901", 70) # 70秒线
api.get_kline_serial("SHFE.cu1901", 86400) # 86400秒线, 即日线
api.get_kline_serial("SHFE.cu1901", 86500) # 86500秒线, 超过1日，无效

TqSdk中最多可以获取每个K线序列的最后8000根K线，无论哪个周期。也就是说，你如果提取小时线，最
多可以提取最后8000根小时线，如果提取分钟线，最多也是可以提取最后8000根分钟线。

对于每个K线序列, 只需要调用一次 get_kline_serial() . 如果需要监控数据更新, 可以使用
wait_update()

klines = api.get_kline_serial("SHFE.cu1812", 10) # 获取SHFE.cu1812合约的10秒K线

while api.wait_update():
print(klines.iloc[-1]) # K线数据有任何变动时都会执行这行

如果只想在新K线出现时收到信号,可以配合使用 is_changing():

klines = api.get_kline_serial("SHFE.cu1812", 10) # 获取SHFE.cu1812合约的10秒K线

while api.wait_update():
if api.is_changing(klines.iloc[-1], "datetime"): # 判定最后一根K线的时间是否有变化

print(klines.iloc[-1]) # 当最后一根K线的时间有变(新K线生
成)时才会执行到这里

3.3.4 Tick序序序列列列

get_tick_serial()函数获取指定合约的Tick序列数据:

ticks = api.get_tick_serial("SHFE.cu1812") # 获取SHFE.cu1812合约的Tick序列

get_tick_serial()的返回值是一个 pandas.DataFrame,常见用法示例如下:

ticks.iloc[-1].bid_price1 # 最后一个Tick的买一价
ticks.volume # 成交量序列, 一个 pandas.Serial

tick序列的更新监控,与K线序列采用同样的方式.

3.3.5 关关关于于于合合合约约约及及及行行行情情情的的的一一一些些些常常常见见见问问问题题题

怎怎怎样样样同同同时时时监监监控控控多多多个个个合合合约约约的的的行行行情情情变变变化化化

TqSdk可以订阅任意多个行情和K线,并在一个wait_update中等待更新. 像这样:

q1 = api.get_quote("SHFE.cu1901")
q2 = api.get_quote("SHFE.cu1902")
k1 = api.get_kline_serial("SHFE.cu1901", 60)
k2 = api.get_kline_serial("SHFE.cu1902", 60)

while api.wait_update():

(continues on next page)

3.3. 合合合约约约,行行行情情情和和和历历历史史史数数数据据据 21

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

print("收到数据了") # 上面4项中的任意一项有变化, 都会到这一句. 具体是哪个或哪几
个变了, 用 is_changing 判断
if api.is_changing(q1):

print(q1) # 如果q1变了, 就会执行这句
if api.is_changing(q2):

print(q2)
if api.is_changing(k1):

print(k1)
if api.is_changing(k2):

print(k2)

关于 wait_update()和 is_changing()的详细说明,请见策略程序结构

3.4 技技技术术术指指指标标标与与与序序序列列列计计计算算算函函函数数数

3.4.1 技技技术术术指指指标标标

tqsdk.ta 模块中包含了大量技术指标. 每个技术指标是一个函数, 函数名为全大写, 第一参数总是K线序列,
以pandas.DataFrame格式返回计算结果.以MACD为例:

from tqsdk.ta import MACD

klines = api.get_kline_serial("SHFE.cu1812", 60) # 提取SHFE.cu1812的分钟线
result = MACD(klines, 12, 26, 9) # 计算MACD指标
print(result["diff"]) # MACD指标中的diff序列

tqsdk.ta中目前提供的技术指标详表，请见 tqsdk.ta -技术指标计算函数

3.4.2 序序序列列列计计计算算算函函函数数数

tqsdk.tafunc模块中包含了一批序列计算函数. 它们是构成技术指标的基础. 在某些情况下,您也可以直接使用
这些序列计算函数以获取更大的灵活性.

例如,技术指标MA(均线)总是按K线的收盘价来计算,如果你需要计算最高价的均线,可以使用ma函数:

from tqsdk.tafunc import ma

klines = api.get_kline_serial("SHFE.cu1812", 60) # 提取SHFE.cu1812的分钟线
result = ma(klines.high, 9) # 按K线的最高价序列做9分钟的移动平均
print(result) # 移动平均结果

tqsdk.tafunc中目前提供的序列计算函数详表，请见 tqsdk.tafunc -序列计算函数

22 Chapter 3. 使使使用用用TqSdk

TianQin Python SDK Documentation, Release 3.4.1

3.5 账账账户户户与与与交交交易易易

3.5.1 信信信易易易账账账户户户和和和实实实盘盘盘账账账户户户

在使用 TqSdk之前，用户需要先注册自己的信信信易易易账账账户户户，传入信易账户是使用任何 TqSdk程序的前提

点击注册信易账户

from tqsdk import TqApi, TqAuth
api = TqApi(auth=TqAuth("信易账户", "账户密码"))

对于 TqSdk免费版，每个信易账户支持最多绑定一个实盘账户，并且信易账户会在用户第一次使用实盘账
户时自动进行绑定(自动绑定功能需要 TqSdk版本> 1.8.3):

from tqsdk import TqApi, TqAuth
api = TqApi(auth=TqAuth("信易账户", "账户密码"))

如果需要注册信易账户或者修改您的信易账户绑定的实盘账户，请点击登录用户管理中心，登录成功后显
示如下

在下方红框处,用户可以自行解绑/绑定实盘账户，其中解绑操作每天限定一次

如果需要让您的信易账户支持更多的实盘账户，可以购买或申请试用我们的天勤量化专业版

3.5.2 设设设定定定实实实盘盘盘交交交易易易账账账户户户

TqSdk要求在创建 TqApi时指定交易账户。一旦TqApi创建成功，后续所有通过TqApi发出的交易指令均在
此账户中进行.

要使用实盘交易账户,请使用 TqAccount (注：使用前请先 import TqAccount):

from tqsdk import TqAccount, TqApi, TqAuth

api = TqApi(TqAccount("H海通期货", "320102", "123456"), auth=TqAuth("信易账户", "账户密码
→˓"))

3.5. 账账账户户户与与与交交交易易易 23

https://account.shinnytech.com/
https://www.shinnytech.com/register-intro/
https://www.shinnytech.com/tqsdk_professional/

TianQin Python SDK Documentation, Release 3.4.1

TqAccount 的三个参数分别为 <期货公司名>, <用户名> 和 <密码> (期货公司名前需加大写首字母). 目
前TqSdk支持的期货公司列表请参见: TqSdk支持的期货公司列表

TqApi创建成功即代表相应账户已登录成功. 如果在60秒内无法完成登录,会抛出超时异常,用户代码可以此
判定登录失败:

try:
api = TqApi(TqAccount("H海通期货", "320102", "123456"), auth=TqAuth("信易账户", "账户

密码"))
except Exception as e:

print("行情服务连不上, 或者期货公司服务器关了, 或者账号密码错了, 总之就是有问题")

3.5.3 设设设定定定快快快期期期模模模拟拟拟交交交易易易账账账户户户

如果您需要使用快期模拟账户进行测试，只需在创建TqApi时传入一个 TqKq的实例，同时需要传入信易账
户模拟交易和论坛。

此账户类型与快期 APP、天勤官网论坛、快期专业版使用相同的模拟账户系统:

from tqsdk import TqApi, TqAuth, TqKq

api = TqApi(TqKq(), auth=TqAuth("信易账户", "账户密码"))

3.5.4 设设设定定定模模模拟拟拟交交交易易易账账账户户户

如果您需要使用模拟账户进行测试，只需在创建TqApi时传入一个 TqSim 的实例（不填写参数则默认为
TqSim()模拟账号）:

api = TqApi(TqSim()，auth=TqAuth("信易账户", "账户密码"))

如果需要使用能保存账户资金及持仓信息的模拟账户，请使用 "快期模拟"账号,账户申请及使用方法请参考
模拟交易和论坛部分内容。

3.5.5 获获获取取取账账账户户户情情情况况况

TqApi提供以下函数来获取交易账户相关信息:

• get_account() -获取账户资金情况

• get_position() -获取持仓情况

• get_order() -获取委托单

以上函数返回的都是dict,并会在 wait_update时更新

24 Chapter 3. 使使使用用用TqSdk

https://www.shinnytech.com/blog/tq-support-broker/

TianQin Python SDK Documentation, Release 3.4.1

3.5.6 交交交易易易指指指令令令

要在交易账户中发出一个委托单,使用 insert_order()函数:

order = api.insert_order(symbol="SHFE.rb1901", direction="BUY", offset="OPEN", limit_
→˓price=4310, volume=2)
print(order)

这个函数调用后会立即返回一个指向此委托单的对象引用,使用方法与dict一致,内容如下:

{
"order_id": "", # "123" (委托单ID, 对于一个用户的所有委托单，这个ID都是不重复的)
"exchange_order_id": "", # "1928341" (交易所单号)
"exchange_id": "", # "SHFE" (交易所)
"instrument_id": "", # "rb1901" (交易所内的合约代码)
"direction": "", # "BUY" (下单方向, BUY=买, SELL=卖)
"offset": "", # "OPEN" (开平标志, OPEN=开仓, CLOSE=平仓, CLOSETODAY=平今)
"volume_orign": 0, # 10 (总报单手数)
"volume_left": 0, # 5 (未成交手数)
"limit_price": float("nan"), # 4500.0 (委托价格, 仅当 price_type = LIMIT 时有效)
"price_type": "", # "LIMIT" (价格类型, ANY=市价, LIMIT=限价)
"volume_condition": "", # "ANY" (手数条件, ANY=任何数量, MIN=最小数量, ALL=全部数量)
"time_condition": "", # "GFD" (时间条件, IOC=立即完成，否则撤销, GFS=本节有效, GFD=当日

有效, GTC=撤销前有效, GFA=集合竞价有效)
"insert_date_time": 0, # 1501074872000000000 (下单时间(按北京时间)，自unix

→˓epoch(1970-01-01 00:00:00 GMT)以来的纳秒数)
"status": "", # "ALIVE" (委托单状态, ALIVE=有效, FINISHED=已完)
"last_msg": "", # "报单成功" (委托单状态信息)

}

与其它所有数据一样,委托单的信息也会在 api.wait_update()时被自动更新:

order = api.insert_order(symbol="SHFE.rb1901", direction="BUY", offset="OPEN", limit_
→˓price=4310,volume=2)
while order.status != "FINISHED":

api.wait_update()
print("委托单状态: %s, 未成交手数: %d 手" % (order.status, order.volume_left))

要撤销一个委托单,使用 cancel_order()函数:

api.cancel_order(order)

• 除除除 insert_order 和和和 cancel_order 外外外, TqSdk 提提提供供供了了了一一一些些些更更更强强强的的的交交交易易易辅辅辅助助助工工工具具具比比比如如如 TargetPosTask.
使使使用用用这这这些些些工工工具具具,可可可以以以简简简化化化交交交易易易逻逻逻辑辑辑的的的编编编码码码工工工作作作.

3.5.7 TqSdk支支支持持持的的的期期期货货货公公公司司司列列列表表表

请点击查看: TqSdk支持的期货公司列表

3.5. 账账账户户户与与与交交交易易易 25

https://www.shinnytech.com/blog/tq-support-broker/

TianQin Python SDK Documentation, Release 3.4.1

3.6 期期期权权权交交交易易易 &交交交易易易所所所官官官方方方组组组合合合

TqSdk中期权交易(商品期权、金融期权和 ETF期权)和交易所官方组合交易，均是 TqSdk专业版中的功能

用户如果想在 TqSdk中进行上述操作，可以点击天勤量化专业版申请使用或购买

TqSdk中期权合和交易所官方组合的约代码格式参考如下:

DCE.m1807-C-2450 - 大商所豆粕期权
CZCE.CF003C11000 - 郑商所棉花期权
SHFE.au2004C308 - 上期所黄金期权
CFFEX.IO2002-C-3550 - 中金所沪深300股指期权
SSE.10002513 - 上交所上证50etf期权
SSE.10002504 - 上交所沪深300etf期权
SZSE.90000097 - 深交所沪深300etf期权
CZCE.SPD SR901&SR903 - 郑商所 SR901&SR903 跨期合约
DCE.SP a1709&a1801 - 大商所 a1709&a1801 跨期合约

对于交易所官方组合，目前 TqSdk中只支持交易所官方组合进行实盘交易

3.6.1 期期期权权权指指指标标标计计计算算算&序序序列列列计计计算算算函函函数数数

TqSdk内提供了丰富的期权指标计算&序列计算函数，参考如下：

• OPTION_GREEKS() -计算期权希腊指标

• OPTION_IMPV() -计算期权隐含波动率

• BS_VALUE() -计算期权 BS模型理论价格

• OPTION_VALUE() -计算期权内在价值，期权时间价值

• get_bs_price() -计算期权 BS模型理论价格

• get_delta() -计算期权希腊指标 delta值

• get_gamma() -计算期权希腊指标 gamma值

• get_rho() -计算期权希腊指标 rho值

• get_theta() -计算期权希腊指标 theta值

• get_vega() -计算期权希腊指标 vega值

• get_his_volatility() -计算某个合约的历史波动率

• get_t() -计算 K线序列对应的年化到期时间，主要用于计算期权相关希腊指标时，需要得到计算出
序列对应的年化到期时间

3.6.2 期期期权权权查查查询询询函函函数数数

TqSdk 内提供了完善的期权查询函数 query_options() 和对应平值虚值期权查询函数
query_atm_options()，供用户搜索符合自己需求的期权:

from tqsdk import TqApi, TqAuth
api = TqApi(auth=TqAuth("信易账户", "账户密码"))

ls = api.query_options("SHFE.au2012")
print(ls) # 标的为 "SHFE.au2012" 的所有期权

(continues on next page)

26 Chapter 3. 使使使用用用TqSdk

https://www.shinnytech.com/tqsdk_professional/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

ls = api.query_options("SHFE.au2012", option_class="PUT")
print(ls) # 标的为 "SHFE.au2012" 的看跌期权

ls = api.query_options("SHFE.au2012", option_class="PUT", expired=False)
print(ls) # 标的为 "SHFE.au2012" 的看跌期权, 未下市的

ls = api.query_options("SHFE.au2012", strike_price=340)
print(ls) # 标的为 "SHFE.au2012" 、行权价为 340 的期权

ls = api.query_options("SSE.510300", exchange_id="CFFEX")
print(ls) # 中金所沪深300股指期权

ls = api.query_options("SSE.510300", exchange_id="SSE")
print(ls) # 上交所沪深300etf期权

ls = api.query_options("SSE.510300", exchange_id="SSE", exercise_year=2020, exercise_
→˓month=12)
print(ls) # 上交所沪深300etf期权, 限制条件 2020 年 12 月份行权

3.7 交交交易易易辅辅辅助助助工工工具具具

TargetPosTask是按照目标持仓手数自动调整账户持仓中某合约的净持仓的工具,使用示例如下:

target_pos = TargetPosTask(api, "SHFE.rb1901") #创建一个自动调仓工具, 负责调整SHFE.
→˓rb1901的持仓
target_pos.set_target_volume(5) #要求自动调仓工具将持仓调整到5手
do_something_else() #现在你可以做别的事了, 自动调仓工具将会在
后台自动下单/撤单/跟单, 直到持仓手数达到5手为止

下面是一个更实际的价差交易例子:

from tqsdk import TqApi, TqAuth, TargetPosTask

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
创建 rb1810 的目标持仓 task，该 task 负责调整 rb1810 的仓位到指定的目标仓位
target_pos_near = TargetPosTask(api, "SHFE.rb1810")
创建 rb1901 的目标持仓 task，该 task 负责调整 rb1901 的仓位到指定的目标仓位
target_pos_deferred = TargetPosTask(api, "SHFE.rb1901")

while True:
api.wait_update()
if api.is_changing(quote_near) or api.is_changing(quote_deferred):

spread = quote_near.last_price - quote_deferred.last_price
print("当前价差:", spread)
if spread > 200:

print("目标持仓: 空近月，多远月")
设置目标持仓为正数表示多头，负数表示空头，0表示空仓
target_pos_near.set_target_volume(-1)
target_pos_deferred.set_target_volume(1)

elif spread < 150:
print("目标持仓: 空仓")
target_pos_near.set_target_volume(0)
target_pos_deferred.set_target_volume(0)

3.7. 交交交易易易辅辅辅助助助工工工具具具 27

TianQin Python SDK Documentation, Release 3.4.1

使使使用用用 TargetPosTask时时时,需需需注注注意意意以以以下下下要要要点点点：：：

• 1. TargetPosTask 在 set_target_volume 时并不下单或撤单, 它的下单和撤单动作, 是在之后的每次
wait_update时执行的.因此,需需需保保保证证证 set_target_volume后后后还还还会会会继继继续续续调调调用用用wait_update()

• 2. 为每个合约只创建一个 TargetPosTask实例.一旦创建好后,可以调用任意多次 set_target_volume函
数,它它它总总总是是是以以以最最最后后后一一一次次次 set_target_volume设设设定定定的的的手手手数数数为为为工工工作作作目目目标标标。。。如:

from tqsdk import TqApi, TqAuth, TargetPosTask

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
target_pos = TargetPosTask(api, "SHFE.rb2001")
设定目标净持仓为空头1手
target_pos.set_target_volume(-1)
目标净持仓由空头1手改为多头1手
target_pos.set_target_volume(1)

while True:
需在 set_target_volume 后调用 wait_update() 以发出指令
当调整到目标净持仓后, 账户中此合约的净持仓为多头1手
api.wait_update()

• 3. TargetPosTask在工作时,会负责下单和追单,直至持仓手数达到目标为止.

• 4. 在将净持仓调整到目标值后,可能只持有其中一个方向的手数,也可能同时有多/空头两个方向的持
仓(原因有两个: 初始就持有多/空两个方向, 调整持仓时未平完某一方向; 或在调整目标持仓时禁
止"平今"或"平昨",然后以开仓操作来调整净持仓).

以以以当当当前前前持持持仓仓仓为为为多多多头头头方方方向向向且且且目目目标标标净净净持持持仓仓仓为为为0为为为例例例,对对对净净净持持持仓仓仓的的的调调调整整整逻逻逻辑辑辑为为为:

– 如果 offset_priority为默认值"今昨,开",则: 先平多头今仓, (若平完今仓后未达到目标
手数)再平多头昨仓, (若平完昨仓后未达到目标手数)再在空头方向开仓.

– 如果 offset_priority为"今开"(即禁止平昨仓),则: 先平多头今仓, (若平完今仓后未达
到目标手数)再在空头方向开仓. (禁止平今仓的"昨开"与此类似)

– 如果 offset_priority为"开"(即禁止平仓),则: 直接在空头方向开仓以达到目标净持仓.

注注注意意意:

对于上期所和上海能源交易中心合约,平仓时则直接根据今/昨的手数进行下单.对于非上期
所和能源交易中心: "今仓"和"昨仓"是服务器按照今/昨仓的定义(本交易日开始时的持仓手数
为昨仓,之后下单的都为今仓)来计算的,在平仓时,则根据计算的今昨仓手数进行下单.

如持有大商所某合约并且 offset_priority 为"今开", 而本交易日未下单(在今昨仓的概念上这
是"昨仓",则不进行平仓,直接用开仓操作来调整净持仓以达到目标.

• 5. 如需要取消当前 TargetPosTask任务，请参考 TargetPosTask高级功能。

• 6. 请勿在使用 TargetPosTask的同时使用 insert_order()函数,否则将导致 TargetPosTask报错或错误下
单。

InsertOrderUntilAllTradedTask是追价下单task,该task会在行情变化后自动撤单重下，直到全部成
交.

28 Chapter 3. 使使使用用用TqSdk

TianQin Python SDK Documentation, Release 3.4.1

3.8 策策策略略略程程程序序序回回回测测测

策略程序回测是 TqSdk专业版中的功能，能让用户在不改变代码的情况下去回测自己的策略在历史行情的
表现

如果想使用策略回测该功能，可以点击天勤量化专业版申请使用或购买

对于 TqSdk免费版本的用户，每天可以进行3次回测，同时也可以申请模拟账户后模拟运行来检验策略模拟
交易和论坛

3.8.1 执执执行行行策策策略略略回回回测测测

使用 TqSdk 编写的策略程序，不需要修改策略代码，只需要在创建 api 实例时给backtest参数传入
TqBacktest ,策略就会进入历史回测模式:

from datetime import date
from tqsdk import TqApi, TqAuth, TqSim, TqBacktest

api = TqApi(TqSim(), backtest=TqBacktest(start_dt=date(2018, 5, 1), end_dt=date(2018,
→˓10, 1)), auth=TqAuth("信易账户", "账户密码"))

使用tqsdk在回测结束后会输出交易记录和每日收盘时的账户资金情况，以及最大回撤、夏普比率等指标，
这些数据可以导入到 excel中或使用其他分析工具进一步处理。

回测示例程序：backtest -回测

3.8.2 在在在回回回测测测结结结束束束时时时获获获取取取回回回测测测详详详细细细信信信息息息

要在回测结束时调用您自己写的代码,可以使用 try/except机制捕获回测结束信号 BacktestFinished,像这样:

from tqsdk import BacktestFinished

acc = TqSim()

try:
api = TqApi(acc, backtest=TqBacktest(start_dt=date(2018, 5, 1), end_dt=date(2018,

→˓10, 1)), auth=TqAuth("信易账户", "账户密码"))
#策略代码在这里
#...

except BacktestFinished as e:
回测结束时会执行这里的代码
api.close()
print(acc.trade_log) # 回测的详细信息

print(acc.tqsdk_stat) # 回测时间内账户交易信息统计结果，其中包含以下字段
init_balance 起始资金
balance 结束资金
max_drawdown 最大回撤
profit_loss_ratio 盈亏额比例
winning_rate 胜率
ror 收益率
annual_yield 年化收益率
sharpe_ratio 年化夏普率
tqsdk_punchline 天勤点评

3.8. 策策策略略略程程程序序序回回回测测测 29

https://www.shinnytech.com/tqsdk_professional/

TianQin Python SDK Documentation, Release 3.4.1

回测的详细信息保存在回测所用的模拟账户 TqSim 中, 可以直接访问它的成员变量 trade_log(格式为 日
期->交易记录及收盘时的权益及持仓).

同时我们也提供简单的图形化的回测报告功能供大家使用策略程序图形化界面，使用效果参考下图

3.8.3 回回回测测测结结结束束束在在在浏浏浏览览览器器器中中中查查查看看看绘绘绘图图图结结结果果果

要在回测结束时，如果依然需要在浏览器中查看绘图结果，同时又需要打印回测信息，您应该这样做:

from tqsdk import BacktestFinished

acc = TqSim()

try:
api = TqApi(acc, backtest=TqBacktest(start_dt=date(2018, 5, 1), end_dt=date(2018,

→˓10, 1)), auth=TqAuth("信易账户", "账户密码"))
#策略代码在这里
#...

except BacktestFinished as e:
print(acc.tqsdk_stat) # 回测时间内账户交易信息统计结果，其中包含以下字段
由于需要在浏览器中查看绘图结果，因此程序不能退出
while True:

api.wait_update()

3.8.4 回回回测测测时时时获获获取取取主主主连连连合合合约约约标标标的的的

在天勤中回测时，对于主连合约，我们支持用户使用 quote.underlying_symbol获取回测当时的标的合约。

示例:

from datetime import date
from tqsdk import TqApi, TqAuth, TqBacktest, BacktestFinished

api = TqApi(backtest=TqBacktest(start_dt=date(2020, 1, 1), end_dt=date(2020, 10, 1)),
→˓auth=TqAuth("信易账户", "账户密码"))

(continues on next page)

30 Chapter 3. 使使使用用用TqSdk

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

quote = api.get_quote("KQ.m@CFFEX.T")
print(quote.datetime, quote.underlying_symbol)
try:

while True:
api.wait_update()
if api.is_changing(quote, "underlying_symbol"):

print(quote.datetime, quote.underlying_symbol)
except BacktestFinished:

api.close()

预期输出：
2019-12-31 15:14:59.999999 CFFEX.T2003
2020-02-19 09:15:00.000000 CFFEX.T2006
2020-05-14 09:15:00.000000 CFFEX.T2009
2020-08-19 09:30:00.000000 CFFEX.T2012

3.8.5 回回回测测测时时时的的的成成成交交交规规规则则则和和和推推推进进进

在天勤中回测时，除了期货、期权合约以外，我们还支持使用指指指数数数进行回测和在回测中交易，指数合约代
码格式参见合约,行情和历史数据

策略回测时使用内置模拟账户 TqSim ,默认回测资金为1000w ,如果需要修改初始回测资金，只需给 TqSim
传入需要设定的金额即可:

from datetime import date
from tqsdk import TqApi, TqAuth, TqSim, TqBacktest

api = TqApi(TqSim(10000), backtest=TqBacktest(start_dt=date(2018, 5, 1), end_
→˓dt=date(2018, 10, 1)), auth=TqAuth("信易账户", "账户密码"))

撮合成交规则为对价成交. 即限价单的价格达到对手盘价格时判定为成交. 不会出现委托单部分成交的情况.

回测时策略程序报单,会立即做一次成交判定.

回测框架的规则是当没有新的事件需要用户处理时才推进到下一个行情,也就是这样:

q = api.get_quote("SHFE.cu1901")
api.wait_update() # 这个 wait_update 更新了行情
api.insert_order("SHFE.cu1901", ...) # 程序下单
api.wait_update() # 这个 wait_update 只会更新委托单状态, 行情还是停在原处
api.insert_order("SHFE.cu1901", ...) # 如果又下了一个单
api.wait_update() # 这个 wait_update 还是只会更新委托单状态, 行情还是停在
原处
api.wait_update() # 这个 wait_update 更新了行情

3.8. 策策策略略略程程程序序序回回回测测测 31

TianQin Python SDK Documentation, Release 3.4.1

3.8.6 对对对股股股票票票合合合约约约进进进行行行回回回测测测

TqSdk在 3.2.0版本后支持了对股票合约进行回测功能，在回测过程中用户需要初始化 TqSimStock类，且
该类只能支持股票模拟交易

由于股票市场 T+1的规则, TargetPosTask函数目前还不支持在股票交易中使用，股票合约交易时只支持
使用 insert_order

如果您想要在回测中同时交易期货和股票合约，则可以使用 TqMultiAccount来实现该需求:

同时使用 TqSim 交易期货，TqSimStock 交易股票
from tqsdk import TqApi, TqAuth, TqMultiAccount, TqSim, TqSimStock

tqsim_future = TqSim()
tqsim_stock = TqSimStock()

api = TqApi(account=TqMultiAccount([tqsim_future, tqsim_stock]), auth=TqAuth("信易账户",
→˓ "账户密码"))

多账户下单，需要指定下单账户
order1 = api.insert_order(symbol="SHFE.cu2112", direction="BUY", offset="OPEN",
→˓volume=10, limit_price=72250.0, account=tqsim_future)
order2 = api.insert_order(symbol="SSE.603666", direction="BUY", volume=300,
→˓account=tqsim_stock)
while order1.status != 'FINISHED' or order2.status != 'FINISHED':

api.wait_update()

打印账户可用资金
future_account = tqsim_future.get_account()
stock_account = tqsim_stock.get_account()
print(future_account.available, stock_account.available)
api.close()

3.8.7 回回回测测测使使使用用用多多多行行行情情情序序序列列列的的的策策策略略略程程程序序序

TqSdk允许一个策略程序中使用多个行情序列,比如这样:

#... 策略程序代码
ka1 = api.get_kline_serial("SHFE.cu1901", 60)
ka2 = api.get_kline_serial("SHFE.cu1901", 3600)
kb = api.get_kline_serial("CFFEX.IF1901", 3600)
tsa = api.get_tick_serial("CFFEX.IF1901")
qa = api.get_quote("DCE.a1901")
#... 策略程序代码

TqSdk回测框架使用一套复杂的规则来推进行情：

规则1: tick序列(例如上面例子中的tsa)总是按逐 tick推进:

tsa = api.get_tick_serial("CFFEX.IF1901")
print(tsa.datetime.iloc[-1]) # 2018/01/01 09:30:00.000
api.wait_update() # 推进一个tick
print(tsa.datetime.iloc[-1]) # 2018/01/01 09:30:00.500

规则2: K线序列 (例如上面例子中的ka1, ka2)总是按周期推进.每根K线在创建时和结束时各更新一次:

32 Chapter 3. 使使使用用用TqSdk

TianQin Python SDK Documentation, Release 3.4.1

ka2 = api.get_kline_serial("SHFE.cu1901", 3600) # 请求小时线
print(ka2.iloc[-1]) # 2018/01/01 09:00:00.000, O=35000,
→˓H=35000, L=35000, C=35000 小时线刚创建
api.wait_update() # 推进1小时, 前面一个小时线结束, 新开一根小时线
print(ka2.iloc[-2]) # 2018/01/01 09:00:00.000, O=35000,
→˓H=35400, L=34700, C=34900 9点这根小时线完成了
print(ka2.iloc[-1]) # 2018/01/01 10:00:00.000, O=34900,
→˓H=34900, L=34900, C=34900 10点的小时线刚创建

规则3: quote按照以下规则更新:

if 策略程序中使用了这个合约的tick序列:
每次tick序列推进时会更新quote的这些字段 datetime/ask&bid_price1/ask&bid_volume1/last_

→˓price/highest/lowest/average/volume/amount/open_interest/price_tick/price_decs/
→˓volume_multiple/max&min_limit&market_order_volume/underlying_symbol/strike_price
elif 策略程序中使用了这个合约的K线序列:
每次K线序列推进时会更新quote. 使用 k线生成的 quote 的盘口由收盘价分别加/减一个最小变动单位, 并且

→˓highest/lowest/average/amount 始终为 nan, volume 始终为0.
每次K线序列推进时会更新quote的这些字段 datetime/ask&bid_price1/ask&bid_volume1/last_price/

→˓open_interest/price_tick/price_decs/volume_multiple/max&min_limit&market_order_
→˓volume/underlying_symbol/strike_price
if 策略程序使用的K线周期大于1分钟:
回测框架会隐式的订阅一个1分钟K线, 确保quote的更新周期不会超过1分钟

else:
回测框架会隐式的订阅一个1分钟K线, 确保quote的更新周期不会超过1分钟

规则4: 策略程序中的多个序列的更新,按时间顺序合并推进.每次 wait_update时,优先处理用户事件,当没有
用户事件时,从各序列中选择下一次更新时间最近的,更新到这个时间:

ka = api.get_kline_serial("SHFE.cu1901", 10) # 请求一个10秒线
kb = api.get_kline_serial("SHFE.cu1902", 15) # 请求一个15秒线
print(ka.iloc[-1].datetime, kb.iloc[-1].datetime) # 2018/01/01 09:00:00, 2018/01/01
→˓09:00:00
api.wait_update() # 推进一步, ka先更新了, 时间推
到 09:00:10
print(ka.iloc[-1].datetime, kb.iloc[-1].datetime) # 2018/01/01 09:00:10, 2018/01/01
→˓09:00:00
api.wait_update() # 再推一步, 这次时间推到
→˓09:00:15, kb更新了
print(ka.iloc[-1].datetime, kb.iloc[-1].datetime) # 2018/01/01 09:00:10, 2018/01/01
→˓09:00:15
api.wait_update() # 再推一步, 这次时间推到
→˓09:00:20, ka更新了
print(ka.iloc[-1].datetime, kb.iloc[-1].datetime) # 2018/01/01 09:00:20, 2018/01/01
→˓09:00:15
api.wait_update() # 再推一步, 时间推到 09:00:30,
→˓ka, kb都更新了
print(ka.iloc[-1].datetime, kb.iloc[-1].datetime) # 2018/01/01 09:00:30, 2018/01/01
→˓09:00:30

注注注意意意：如果未订阅 quote，模拟交易在下单时会自动为此合约订阅 quote，根据回测时 quote的更新规则，
如果此合约没有订阅K线或K线周期大于分钟线则则则会会会自自自动动动订订订阅阅阅一一一个个个分分分钟钟钟线线线。

另外，对组组组合合合合合合约约约进行回测时需注意：只能通过订阅 tick数据来回测，不能订阅K线，因为K线是由最新
价合成的，而交易所发回的组合合约数据中无最新价。

3.8. 策策策略略略程程程序序序回回回测测测 33

TianQin Python SDK Documentation, Release 3.4.1

3.8.8 了了了解解解更更更多多多

• 如果你要做大量回测,或者试图做参数优化/参数搜索,请看批量回测,参数搜索及其它

• 如果你在回测时需要图形化界面支持，我们提供 TqSdk内置强大的图形化界面解决方案策略程序图形
化界面

3.9 策策策略略略程程程序序序图图图形形形化化化界界界面面面

要在 TqSdk中实现图形化界面非常简单，在 TqApi中传入参数 web_gui = True即可，一套方案满足实盘/回
测需求

对于需要固定web_gui网址的同学，可以传入本机IP端口 web_gui = "http://192.168.143.0:9876"（需填写本
机IP端口）来进行固定网址

3.9.1 实实实盘盘盘情情情况况况下下下的的的图图图形形形化化化界界界面面面

实盘下的示例代码:

引入TqSdk模块
from tqsdk import TqApi, TqAuth
创建api实例，设置web_gui=True生成图形化界面
api = TqApi(web_gui=True, auth=TqAuth("信易账户", "账户密码"))
订阅 cu2002 合约的10秒线
klines = api.get_kline_serial("SHFE.cu2002", 10)
while True:

通过wait_update刷新数据
api.wait_update()

当你运行该程序后，预期会显示如下两条信息:

2019-12-13 10:45:26,468 - INFO - 您可以访问 http://127.0.0.1:62964 查看策略绘制出的 K 线图
形。
2019-12-13 10:45:27,422 - INFO - 通知: 与 wss://openmd.shinnytech.com/t/md/front/
→˓mobile 的网络连接已建立

点击访问地址后，显示网址效果如下:

3.9.2 回回回测测测情情情况况况下下下的的的图图图形形形化化化界界界面面面

回测情况下，设置完回测区间参数后传入web_gui=True，也可以用同样的方法来生成图形化地址:

from datetime import date
from tqsdk import TqApi, TqAuth, TqBacktest, TargetPosTask
在创建 api 实例时传入 TqBacktest 就会进入回测模式,设置web_gui=True开启图形化界面
api = TqApi(backtest=TqBacktest(start_dt=date(2018, 5, 2), end_dt=date(2018, 6, 2)),
→˓web_gui=True, auth=TqAuth("信易账户", "账户密码"))
获得 m1901 5分钟K线的引用
klines = api.get_kline_serial("DCE.m1901", 5 * 60, data_length=15)
创建 m1901 的目标持仓 task，该 task 负责调整 m1901 的仓位到指定的目标仓位
target_pos = TargetPosTask(api, "DCE.m1901")
while True:

api.wait_update()

(continues on next page)

34 Chapter 3. 使使使用用用TqSdk

http://192.168.143.0:9876

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

if api.is_changing(klines):
ma = sum(klines.close.iloc[-15:]) / 15
print("最新价", klines.close.iloc[-1], "MA", ma)
if klines.close.iloc[-1] > ma:

print("最新价大于MA: 目标多头5手")
设置目标持仓为多头5手
target_pos.set_target_volume(5)

elif klines.close.iloc[-1] < ma:
print("最新价小于MA: 目标空仓")
设置目标持仓为空仓
target_pos.set_target_volume(0)

点击访问地址后，显示网址效果如下:

点击完整回测报告，显示更加详细的报告结果:

3.9. 策策策略略略程程程序序序图图图形形形化化化界界界面面面 35

TianQin Python SDK Documentation, Release 3.4.1

如何在 TqSdk中进行回测可以参见策略程序回测

36 Chapter 3. 使使使用用用TqSdk

CHAPTER

FOUR

示示示例例例程程程序序序

4.1 基基基本本本使使使用用用

目目目录录录

• 基本使用

– t10 -获取实时行情

– t20 -识别行情更新

– t30 -使用K线/Tick数据

– t40 -下单/撤单

– t41 -开仓/平仓

– t60 -单均线策略

– t70 -简单均线策略(目标持仓模型)

– t71 -简单趋势策略

– t72 -隔夜开盘抢单

– t80 -价差回归策略

– t90 -在主图中画指标线

– t91 -在附图中画指标线

– t92 -主图中画信号线及文字标注

– t93 -在主图中画线和方框

– t94 -在附图中画K线

– t95 -附图中画K线、线段和方框

– t96 -附图中画MACD

– underlying_symbol -获取主连映射主力合约

– backtest -回测

– downloader -下载数据

– downloader_orders -下载委托单和成交记录

– ta -指标计算

37

TianQin Python SDK Documentation, Release 3.4.1

– ta_option -期权指标计算

– multiaccount -多账户

4.1.1 t10 -获获获取取取实实实时时时行行行情情情

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from tqsdk import TqApi, TqAuth

创建API实例,传入自己的信易账户
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
获得上期所 ni2206 的行情引用，当行情有变化时 quote 中的字段会对应更新
quote = api.get_quote("SHFE.ni2206")

输出 ni2206 的最新行情时间和最新价
print(quote.datetime, quote.last_price)

关闭api,释放资源
api.close()

4.1.2 t20 -识识识别别别行行行情情情更更更新新新

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from tqsdk import TqApi, TqAuth

可以指定debug选项将调试信息写入指定的文件中
api = TqApi(debug="debug.log", auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("CZCE.FG209")
print(quote.datetime, quote.last_price, quote.ask_price1, quote.ask_price2)

while True:
调用 wait_update 等待业务信息发生变化，例如: 行情发生变化, 委托单状态变化, 发生成交等等
注意：其他合约的行情的更新也会触发业务信息变化，因此下面使用 is_changing 判断 FG209 的行情是

否有变化
api.wait_update()
如果 FG209 的任何字段有变化，is_changing就会返回 True
if api.is_changing(quote):

print("行情变化", quote)
只有当 FG209 的最新价有变化，is_changing才会返回 True
if api.is_changing(quote, "last_price"):

print("最新价变化", quote.last_price)
当 FG209 的买1价/买1量/卖1价/卖1量中任何一个有变化，is_changing都会返回 True
if api.is_changing(quote, ["ask_price1", "ask_volume1", "bid_price1", "bid_volume1

→˓"]):
print("盘口变化", quote.ask_price1, quote.ask_volume1, quote.bid_price1, quote.

→˓bid_volume1)

38 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

4.1.3 t30 -使使使用用用K线线线/Tick数数数据据据

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from tqsdk import TqApi, TqAuth
import datetime

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
获得 i2209 tick序列的引用
ticks = api.get_tick_serial("DCE.i2209")
获得 i2209 10秒K线的引用
klines = api.get_kline_serial("DCE.i2209", 10)
print(datetime.datetime.fromtimestamp(klines.iloc[-1]["datetime"] / 1e9))

while True:
api.wait_update()
判断整个tick序列是否有变化
if api.is_changing(ticks):

ticks.iloc[-1]返回序列中最后一个tick
print("tick变化", ticks.iloc[-1])

判断最后一根K线的时间是否有变化，如果发生变化则表示新产生了一根K线
if api.is_changing(klines.iloc[-1], "datetime"):

datetime: 自unix epoch(1970-01-01 00:00:00 GMT)以来的纳秒数
print("新K线", datetime.datetime.fromtimestamp(klines.iloc[-1]["datetime"] /

→˓1e9))
判断最后一根K线的收盘价是否有变化
if api.is_changing(klines.iloc[-1], "close"):

klines.close返回收盘价序列
print("K线变化", datetime.datetime.fromtimestamp(klines.iloc[-1]["datetime"] /

→˓1e9), klines.close.iloc[-1])

4.1.4 t40 -下下下单单单/撤撤撤单单单

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from tqsdk import TqApi, TqAuth

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
获得 m2105 的持仓引用，当持仓有变化时 position 中的字段会对应更新
position = api.get_position("DCE.m2105")
获得资金账户引用，当账户有变化时 account 中的字段会对应更新
account = api.get_account()
下单并返回委托单的引用，当该委托单有变化时 order 中的字段会对应更新
order = api.insert_order(symbol="DCE.m2105", direction="BUY", offset="OPEN", volume=5,
→˓ limit_price=2750)

while True:
api.wait_update()
if api.is_changing(order, ["status", "volume_orign", "volume_left"]):

print("单状态: %s, 已成交: %d 手" % (order.status, order.volume_orign - order.
→˓volume_left))

(continues on next page)

4.1. 基基基本本本使使使用用用 39

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

if api.is_changing(position, "pos_long_today"):
print("今多头: %d 手" % (position.pos_long_today))

if api.is_changing(account, "available"):
print("可用资金: %.2f" % (account.available))

4.1.5 t41 -开开开仓仓仓/平平平仓仓仓

#!/usr/bin/env python
-*- coding: utf-8 -*-

from tqsdk import TqApi, TqAuth

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.ni2206")
开仓两手并等待完成
order = api.insert_order(symbol="SHFE.ni2206", direction="BUY", offset="OPEN", limit_
→˓price=quote.ask_price1, volume=2)
while order.status != "FINISHED":

api.wait_update()
print("已开仓")
平今两手并等待完成
order = api.insert_order(symbol="SHFE.ni2206", direction="SELL", offset="CLOSETODAY",
→˓limit_price=quote.bid_price1,

volume=2)
while order.status != "FINISHED":

api.wait_update()
print("已平今")
关闭api,释放相应资源
api.close()

4.1.6 t60 -单单单均均均线线线策策策略略略

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from tqsdk import TqApi, TqAuth

'''
如果当前价格大于10秒K线的MA15则开多仓 (使用 insert_order() 函数)
如果小于则平仓
'''
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
获得 m2207 10秒K线的引用
klines = api.get_kline_serial("DCE.m2207", 10)

判断开仓条件
while True:

api.wait_update()
if api.is_changing(klines):

ma = sum(klines.close.iloc[-15:]) / 15
print("最新价", klines.close.iloc[-1], "MA", ma)

(continues on next page)

40 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

if klines.close.iloc[-1] > ma:
print("最新价大于MA: 市价开仓")
api.insert_order(symbol="DCE.m2207", direction="BUY", offset="OPEN",

→˓volume=5)
break

判断平仓条件
while True:

api.wait_update()
if api.is_changing(klines):

ma = sum(klines.close.iloc[-15:]) / 15
print("最新价", klines.close.iloc[-1], "MA", ma)
if klines.close.iloc[-1] < ma:

print("最新价小于MA: 市价平仓")
api.insert_order(symbol="DCE.m2207", direction="SELL", offset="CLOSE",

→˓volume=5)
break

关闭api,释放相应资源
api.close()

4.1.7 t70 -简简简单单单均均均线线线策策策略略略(目目目标标标持持持仓仓仓模模模型型型)

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from tqsdk import TqApi, TqAuth, TargetPosTask

'''
如果当前价格大于10秒K线的MA15则开多仓 (使用 TargetPosTask 调仓工具)
如果小于则平仓
'''
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
获得 m2207 10秒K线的引用
klines = api.get_kline_serial("DCE.m2207", 10)
创建 m2207 的目标持仓 task，该 task 负责调整 m2207 的仓位到指定的目标仓位
target_pos = TargetPosTask(api, "DCE.m2207")

while True:
api.wait_update()
if api.is_changing(klines):

ma = sum(klines.close.iloc[-15:]) / 15
print("最新价", klines.close.iloc[-1], "MA", ma)
if klines.close.iloc[-1] > ma:

print("最新价大于MA: 目标多头5手")
设置目标持仓为多头5手
target_pos.set_target_volume(5)

elif klines.close.iloc[-1] < ma:
print("最新价小于MA: 目标空仓")
设置目标持仓为空仓
target_pos.set_target_volume(0)

4.1. 基基基本本本使使使用用用 41

TianQin Python SDK Documentation, Release 3.4.1

4.1.8 t71 -简简简单单单趋趋趋势势势策策策略略略

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'yanqiong'

from tqsdk import TqApi, TqAuth, TargetPosTask

'''
连续3根阴线就做空，连续3根阳线就做多，否则空仓
'''

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
设定连续多少根阳线/阴线
length = 3
获得 ni2205 10秒K线的引用, 长度为 length+1
klines = api.get_kline_serial("SHFE.ni2205", 10, data_length=length + 1)
创建 ni2205 的目标持仓 task，该 task 负责调整 ni2105 的仓位到指定的目标仓位, offset_
→˓priority的用法详见文档
target_pos = TargetPosTask(api, "SHFE.ni2205", offset_priority="今昨开")

while True:
api.wait_update()
只有在新创建出K线时才判断开平仓条件
if api.is_changing(klines.iloc[-1], "datetime"):

跳过最后一根刚生成的K线
df = klines.iloc[:-1]
比较收盘价和开盘价，判断是阳线还是阴线
df.close 为收盘价序列, df.open 为开盘价序列, ">"(pandas.Series.gt) 返回收盘价是否大

于开盘价的一个新序列
up = df.close > df.open
down = df.close < df.open
if all(up):

print("连续阳线: 目标持仓 多头1手")
设置目标持仓为正数表示多头，负数表示空头，0表示空仓
target_pos.set_target_volume(1)

elif all(down):
print("连续阴线: 目标持仓 空头1手")
target_pos.set_target_volume(-1)

else:
print("目标持仓: 空仓")
target_pos.set_target_volume(0)

4.1.9 t72 -隔隔隔夜夜夜开开开盘盘盘抢抢抢单单单

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'ringo'

from tqsdk import TqApi, TqAuth
from tqsdk.tafunc import time_to_datetime

'''
使用get_trading_status来判断合约是否进入交易状态来进行下单，该接口需要有天勤量化专业版资格才可使用
'''

(continues on next page)

42 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
ts = api.get_trading_status("SHFE.cu2201")
print(ts.trade_status)

while True:
api.wait_update()
如果处于集合竞价状态则进行下单
if ts.trade_status == "AUCTIONORDERING":

order = api.insert_order("SHFE.cu2201", "BUY", "OPEN", 1, 71400)
break

insert_order指令会在下一次wait_update()发出
api.wait_update()

api.close()

4.1.10 t80 -价价价差差差回回回归归归策策策略略略

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from tqsdk import TqApi, TqAuth, TargetPosTask

'''
价差回归
当近月-远月的价差大于250时做空近月，做多远月
当价差小于200时平仓
'''
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote_near = api.get_quote("SHFE.rb2104")
quote_deferred = api.get_quote("SHFE.rb2105")
创建 rb2104 的目标持仓 task，该 task 负责调整 rb2104 的仓位到指定的目标仓位
target_pos_near = TargetPosTask(api, "SHFE.rb2104")
创建 rb2105 的目标持仓 task，该 task 负责调整 rb2105 的仓位到指定的目标仓位
target_pos_deferred = TargetPosTask(api, "SHFE.rb2105")

while True:
api.wait_update()
if api.is_changing(quote_near) or api.is_changing(quote_deferred):

spread = quote_near.last_price - quote_deferred.last_price
print("当前价差:", spread)
if spread > 250:

print("目标持仓: 空近月，多远月")
设置目标持仓为正数表示多头，负数表示空头，0表示空仓
target_pos_near.set_target_volume(-1)
target_pos_deferred.set_target_volume(1)

elif spread < 200:
print("目标持仓: 空仓")
target_pos_near.set_target_volume(0)
target_pos_deferred.set_target_volume(0)

4.1. 基基基本本本使使使用用用 43

TianQin Python SDK Documentation, Release 3.4.1

4.1.11 t90 -在在在主主主图图图中中中画画画指指指标标标线线线

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

from tqsdk import TqApi, TqAuth
from tqsdk.ta import MA

'''
画图示例: 在主图中画指标线
注意: 画图示例中用到的数据不含有实际意义，请根据自己的实际策略情况进行修改
'''

api = TqApi(web_gui=True, auth=TqAuth("信易账户", "账户密码")) # web_gui=True, 开启使用
→˓web 界面查看绘图结果的功能
klines = api.get_kline_serial("SHFE.rb2105", 5)

画一次指标线
ma = MA(klines, 30) # 使用 tqsdk 自带指标函数计算均线
klines["ma_MAIN"] = ma.ma # 在主图中画一根默认颜色（红色）的 ma 指标线

由于需要在浏览器中查看绘图结果，因此程序不能退出
while True:

api.wait_update()

4.1.12 t91 -在在在附附附图图图中中中画画画指指指标标标线线线

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

from tqsdk import TqApi, TqAuth
from tqsdk.ta import MA

'''
画图示例: 在附图中画指标线
(将画图代码放在循环中即可使图像随着行情推进而更新)
注意: 画图示例中用到的数据不含有实际意义，请根据自己的实际策略情况进行修改
'''

api = TqApi(web_gui=":9878", auth=TqAuth("信易账户", "账户密码")) # web_gui="[ip]:port",
→˓ 指定 web 界面地址的 ip 和 port
klines = api.get_kline_serial("SHFE.rb2105", 24 * 60 * 60)

while True:
将画图代码放在循环中即可使图像随着行情推进而更新
ma = MA(klines, 30) # 使用tqsdk自带指标函数计算均线

示例1: 在附图中画一根绿色的ma指标线
klines["ma_B2"] = ma.ma
klines["ma_B2.board"] = "B2" # 设置附图: 可以设置任意字符串,同一字符串表示同一副图
klines["ma_B2.color"] = "green" # 设置为绿色. 以下设置颜色方式都可行: "green", "#00FF00

→˓", "rgb(0,255,0)", "rgba(0,125,0,0.5)"

(continues on next page)

44 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

示例2: 在另一个附图画一根比ma小4的宽度为4的紫色指标线
klines["ma_4"] = ma.ma - 4
klines["ma_4.board"] = "MA4" # 设置为另一个附图
klines["ma_4.color"] = 0xFF9933CC # 设置为紫色, 或者 "#9933FF"
klines["ma_4.width"] = 4 # 设置宽度为4，默认为1

api.wait_update()

4.1.13 t92 -主主主图图图中中中画画画信信信号号号线线线及及及文文文字字字标标标注注注

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

from tqsdk import TqApi, TqAuth

'''
画图示例: 在主图中画信号线及文字标注
注意: 画图示例中用到的数据不含有实际意义，请根据自己的实际策略情况进行修改
'''

api = TqApi(web_gui=True, auth=TqAuth("信易账户", "账户密码")) # web_gui=True, 开启使用
→˓web 界面查看绘图结果的功能
klines = api.get_kline_serial("SHFE.rb2105", 300)

示例1: 在主图中最后一根K线上画射线以标注需要的信号
api.draw_line(klines, -1, klines.iloc[-1].close, -1, klines.iloc[-1].high, line_type=
→˓"SEG", color=0xFFFF9900, width=3)

示例2: 绘制字符串
api.draw_text(klines, "信号1", x=-1, y=klines.iloc[-1].high + 5, color=0xFFFF3333)

示例3: 给主图最后5根K线加一个方框
api.draw_box(klines, x1=-5, y1=klines.iloc[-5]["high"], x2=-1, y2=klines.iloc[-1]["low
→˓"], width=1, color=0xFF0000FF,

bg_color=0x7000FF00)

由于需要在浏览器中查看绘图结果，因此程序不能退出
while True:

api.wait_update()

4.1.14 t93 -在在在主主主图图图中中中画画画线线线和和和方方方框框框

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

from tqsdk import TqApi, TqAuth

'''
画图示例: 在主图中画线和方框
注意: 画图示例中用到的数据不含有实际意义，请根据自己的实际策略情况进行修改

(continues on next page)

4.1. 基基基本本本使使使用用用 45

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

'''

api = TqApi(web_gui=True, auth=TqAuth("信易账户", "账户密码")) # web_gui=True, 开启使用
→˓web 界面查看绘图结果的功能
klines = api.get_kline_serial("SHFE.rb2105", 60)

由于需要在浏览器中查看绘图结果，因此程序不能退出
while True:

api.wait_update() # 当有业务信息发生变化时执行
当最后 1 根柱子最大最小值价差大于 0.05 时，在主图绘制信号
high = klines.iloc[-1].high
low = klines.iloc[-1].low
if high - low > 0.05:

绘制直线, 每一个 id 对应同一条直线
api.draw_line(klines, -1, high, -1, low, id="box%.0f" % (klines.iloc[-1].id),

→˓color=0xaa662244, width=4)
绘制字符串
api.draw_text(klines, "信号1", x=-1, y=low, id="text%.0f" % (klines.iloc[-1].

→˓id), color=0xFFFF3333)

4.1.15 t94 -在在在附附附图图图中中中画画画K线线线

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

from tqsdk import TqApi, TqAuth

'''
画图示例: 在附图中画K线
注意: 画图示例中用到的数据不含有实际意义，请根据自己的实际策略情况进行修改
'''

api = TqApi(web_gui=True, auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("SHFE.rb2104", 86400)
klines2 = api.get_kline_serial("SHFE.rb2105", 86400)

while True:
将画图代码放在循环中即可使图像随着行情推进而更新
在附图画出 rb2105 的K线: 需要将open、high、log、close的数据都设置正确
klines["rb2105.open"] = klines2["open"]
klines["rb2105.high"] = klines2["high"]
klines["rb2105.low"] = klines2["low"]
klines["rb2105.close"] = klines2["close"]
klines["rb2105.board"] = "B2"
api.wait_update()

46 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

4.1.16 t95 -附附附图图图中中中画画画K线线线、、、线线线段段段和和和方方方框框框

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

from tqsdk import TqApi, TqAuth
from tqsdk.ta import MA

'''
画图示例: 在同一附图中画K线、线段和方框
注意: 画图示例中用到的数据不含有实际意义，请根据自己的实际策略情况进行修改
'''

api = TqApi(web_gui=True, auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial("CFFEX.T2103", 10)
klines2 = api.get_kline_serial("CFFEX.T2012", 10)

示例1 : 在附图画出 T2012 的K线: 需要将open、high、log、close的数据都设置正确
klines["T2012.open"] = klines2["open"]
klines["T2012.high"] = klines2["high"]
klines["T2012.low"] = klines2["low"]
klines["T2012.close"] = klines2["close"]
klines["T2012.board"] = "B2"
ma = MA(klines, 30)
klines["ma_MAIN"] = ma.ma

示例2: 在附图中画线段(默认为红色)
api.draw_line(klines, -10, klines2.iloc[-10].low, -3, klines2.iloc[-3].high, id="my_
→˓line", board="B2", line_type="SEG",

color=0xFFFF00FF, width=3)

示例3: 在附图K线上画黄色的方框: 需要设置画在附图时, 将board参数选择到对应的图板即可
api.draw_box(klines, x1=-5, y1=klines2.iloc[-5]["high"], x2=-1, y2=klines2.iloc[-1][
→˓"low"], id="my_box", board="B2",

width=1, color=0xFF0000FF, bg_color=0x70FFFF00)

由于需要在浏览器中查看绘图结果，因此程序不能退出
while True:

api.wait_update()

4.1.17 t96 -附附附图图图中中中画画画MACD

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'yanqiong'

from tqsdk import TqApi, TqAuth
from tqsdk.ta import MACD

'''
画图示例: 在附图中画 macd 指标示例
注意: 画图示例中用到的数据不含有实际意义，请根据自己的实际策略情况进行修改
'''

(continues on next page)

4.1. 基基基本本本使使使用用用 47

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

def calc_macd_klines(klines):
计算 macd 指标
macd = MACD(klines, 12, 26, 9)
用 K 线图模拟 MACD 指标柱状图
klines["MACD.open"] = 0.0
klines["MACD.close"] = macd["bar"]
klines["MACD.high"] = klines["MACD.close"].where(klines["MACD.close"] > 0, 0)
klines["MACD.low"] = klines["MACD.close"].where(klines["MACD.close"] < 0, 0)
klines["MACD.board"] = "MACD"
在 board=MACD 上添加 diff、dea 线
klines["diff"] = macd["diff"]
klines["diff.board"] = "MACD"
klines["diff.color"] = "gray"
klines["dea"] = macd["dea"]
klines["dea.board"] = "MACD"
klines["dea.color"] = "rgb(255,128,0)"

api = TqApi(auth=TqAuth("信易账户", "账户密码"), web_gui=True)
klines = api.get_kline_serial("SHFE.rb2105", 5*60, 200)
while True:

calc_macd_klines(klines)
api.wait_update()

4.1.18 underlying_symbol -获获获取取取主主主连连连映映映射射射主主主力力力合合合约约约

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = "Ringo"

from tqsdk import TqApi, TqAuth

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

订阅螺纹钢主连
quote = api.get_quote("KQ.m@SHFE.rb")
打印现在螺纹钢主连的标的合约
print(quote.underlying_symbol)

api.close()

4.1.19 backtest -回回回测测测

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from datetime import date
from tqsdk import TqApi, TqAuth, TqBacktest, TargetPosTask

'''
如果当前价格大于5分钟K线的MA15则开多仓

(continues on next page)

48 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

如果小于则平仓
回测从 2018-05-01 到 2018-10-01
'''
在创建 api 实例时传入 TqBacktest 就会进入回测模式
api = TqApi(backtest=TqBacktest(start_dt=date(2018, 5, 1), end_dt=date(2018, 10, 1)),
→˓auth=TqAuth("信易账户", "账户密码"))
获得 m1901 5分钟K线的引用
klines = api.get_kline_serial("DCE.m1901", 5 * 60, data_length=15)
创建 m1901 的目标持仓 task，该 task 负责调整 m1901 的仓位到指定的目标仓位
target_pos = TargetPosTask(api, "DCE.m1901")

while True:
api.wait_update()
if api.is_changing(klines):

ma = sum(klines.close.iloc[-15:]) / 15
print("最新价", klines.close.iloc[-1], "MA", ma)
if klines.close.iloc[-1] > ma:

print("最新价大于MA: 目标多头5手")
设置目标持仓为多头5手
target_pos.set_target_volume(5)

elif klines.close.iloc[-1] < ma:
print("最新价小于MA: 目标空仓")
设置目标持仓为空仓
target_pos.set_target_volume(0)

4.1.20 downloader -下下下载载载数数数据据据

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

from datetime import datetime
from contextlib import closing
from tqsdk import TqApi, TqAuth
from tqsdk.tools import DataDownloader

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
下载从 2018-01-01凌晨6点 到 2018-06-01下午4点 的 cu1805 分钟线数据
kd = DataDownloader(api, symbol_list="SHFE.cu1805", dur_sec=60,

start_dt=datetime(2018, 1, 1, 6, 0 ,0), end_dt=datetime(2018, 6,
→˓1, 16, 0, 0), csv_file_name="kline.csv")
下载从 2018-05-01凌晨0点 到 2018-07-01凌晨0点 的 T1809 盘口Tick数据
td = DataDownloader(api, symbol_list="CFFEX.T1809", dur_sec=0,

start_dt=datetime(2018, 5, 1), end_dt=datetime(2018, 7, 1), csv_
→˓file_name="tick.csv")
使用with closing机制确保下载完成后释放对应的资源
with closing(api):

while not kd.is_finished() or not td.is_finished():
api.wait_update()
print("progress: kline: %.2f%% tick:%.2f%%" % (kd.get_progress(), td.get_

→˓progress()))

4.1. 基基基本本本使使使用用用 49

TianQin Python SDK Documentation, Release 3.4.1

4.1.21 downloader_orders -下下下载载载委委委托托托单单单和和和成成成交交交记记记录录录

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'yanqiong'

import csv
import os
from datetime import datetime

from tqsdk import TqApi, TqAuth, TqKq

"""
本示例用于下载账户当前交易日到目前位置的全部委托单、成交记录分别到 orders.csv、trades.csv 文件。

如果文件已经存在，会将记录追加到文件末尾。

用户可以在交易日结束之后，运行本示例，可以将当日的委托单、成交记录保存到本地。
"""

order_cols = ["order_id", "exchange_order_id", "exchange_id", "instrument_id",
→˓"direction", "offset", "status", "volume_orign", "volume_left", "limit_price",
→˓"price_type", "volume_condition", "time_condition", "insert_date_time", "last_msg"]
trade_cols = ["trade_id", "order_id", "exchange_trade_id", "exchange_id", "instrument_
→˓id", "direction", "offset", "price", "volume", "trade_date_time"]

def write_csv(file_name, cols, datas):
file_exists = os.path.exists(file_name) and os.path.getsize(file_name) > 0
with open(file_name, 'a', newline='') as csvfile:

csv_writer = csv.writer(csvfile, dialect='excel')
if not file_exists:

csv_writer.writerow(['datetime'] + cols)
for item in datas.values():

if 'insert_date_time' in cols:
dt = datetime.fromtimestamp(item['insert_date_time'] / 1e9).strftime('

→˓%Y-%m-%d %H:%M:%S.%f')
elif 'trade_date_time' in cols:

dt = datetime.fromtimestamp(item['trade_date_time'] / 1e9).strftime('
→˓%Y-%m-%d %H:%M:%S.%f')

else:
dt = None

row = [dt] + [item[k] for k in cols]
csv_writer.writerow(row)

with TqApi(TqKq(), auth=TqAuth("信易账户", "账户密码")) as api:
将当前账户下全部委托单、成交信息写入 csv 文件中
write_csv("orders.csv", order_cols, api.get_order())
write_csv("trades.csv", trade_cols, api.get_trade())

50 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

4.1.22 ta -指指指标标标计计计算算算

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

import datetime
from tqsdk import TqApi, TqAuth
from tqsdk.ta import *

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
获得 cu1909 10秒K线的引用
klines = api.get_kline_serial("SHFE.cu1910", 10, data_length=3000)

print("K线时间", datetime.datetime.fromtimestamp(klines.iloc[-1]["datetime"] / 1e9))
print(klines)

print("ATR", ATR(klines, 26))
print("BIAS", BIAS(klines, 6))
print("BOLL", BOLL(klines, 3, 5))
print("DMI", DMI(klines, 14, 6))
print("KDJ", KDJ(klines, 9, 3, 3))
print("MA", MA(klines, 3))
print("MACD", MACD(klines, 20, 35, 10))
print("SAR", SAR(klines, 4, 0.02, 0.2))

api.close()

4.1.23 ta_option -期期期权权权指指指标标标计计计算算算

#!usr/bin/env python3
#-*- coding:utf-8 -*-

from tqsdk import TqApi, TqAuth, tafunc
from tqsdk.ta import *

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

underlying_quote = api.get_quote("SHFE.cu2009")
klines = api.get_kline_serial('SHFE.cu2009', 24 * 60 * 60, 20)
v = tafunc.get_his_volatility(klines, underlying_quote)
print("历史波动率:", v)

quote = api.get_quote("SHFE.cu2009C44000")
bs_serise = BS_VALUE(klines, quote, 0.025)
print("理论价:", list(round(bs_serise['bs_price'], 2)))

klines2 = api.get_kline_serial(["SHFE.cu2009C44000", "SHFE.cu2009"], 24 * 60 * 60, 20)

values = OPTION_VALUE(klines2, quote)
print("内在价值:", list(values["intrins"]))
print("时间价值:", list(values["time"]))

impv = OPTION_IMPV(klines2, quote, 0.025)

(continues on next page)

4.1. 基基基本本本使使使用用用 51

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

print("隐含波动率:", list(round(impv['impv'] * 100, 2)))

greeks = OPTION_GREEKS(klines2, quote, 0.025, impv['impv'])
print("delta:", list(greeks["delta"]))
print("theta:", list(greeks["theta"]))
print("gamma:", list(greeks["gamma"]))
print("vega:", list(greeks["vega"]))
print("rho:", list(greeks["rho"]))

api.close()

4.1.24 multiaccount -多多多账账账户户户

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'hongyan'

from tqsdk import TqApi, TqAuth, TqAccount, TqKq, TqSim, TqMultiAccount
多账户模式下, 同时操作实盘、模拟交易和快期模拟账户交易
tqact = TqAccount("H海通期货", "123456", "123456")
sim = TqSim()
kq = TqKq()

with TqApi(TqMultiAccount([tqact, sim, kq]), auth=TqAuth("信易账户", "账户密码")) as api:
order1 = api.insert_order(symbol="DCE.m2101", direction="BUY", offset="OPEN",

→˓volume=5, account=tqact)
order2 = api.insert_order(symbol="SHFE.au2012C308", direction="BUY", offset="OPEN

→˓", volume=5, limit_price=78.1, account=sim)
order3 = api.insert_order(symbol="SHFE.cu2101", direction="Sell", offset="OPEN",

→˓volume=10, limit_price=51610, account=kq)
api.cancel_order(order3, kq)
while order1.status != "FINISHED" or order2.status != "FINISHED":

api.wait_update()
分别获取账户资金信息
account_info1 = tqact.get_account()
account_info2 = sim.get_account()
account_info3 = kq.get_account()
分别获取账户持仓信息
position1 = tqact.get_position("DCE.m2101",)
position2 = sim.get_position()
position3 = kq.get_position()
分别获取账户委托数据
orders1 = tqact.get_order(order_id=order1.order_id,)
orders2 = sim.get_position()
orders3 = kq.get_position()
分别获取账户成交数据
trades1 = tqact.get_trade()
trades2 = sim.get_trade()
trades3 = kq.get_trade()

52 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

4.2 期期期权权权基基基本本本使使使用用用

目目目录录录

• 期权基本使用

– o10 -获取期权实时行情

– o20 -查询符合要求的期权

– o30 -查询平值/虚值/实值期权

– o40 -计算期权的希腊字母

– o41 -计算期权隐含波动率和历史波动率

– o60 -获取期权波动率曲面

– o70 -期权套利策略

– o71 -获取一组期权和其对应行权价

– o72 -查询标的对应期权按虚值平值实值分类方法一

– o73 -查询标的对应期权按虚值平值实值分类方法二

– o74 -本地计算ETF期权卖方开仓保证金

4.2.1 o10 -获获获取取取期期期权权权实实实时时时行行行情情情

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'ringo'

from tqsdk import TqApi, TqAuth

创建API实例,传入自己的信易账户
api = TqApi(auth=TqAuth("信易账户", "账户密码"))

获取大商所豆粕期权行情
quote_m = api.get_quote("DCE.m1807-C-2450")

获取中金所股指期权行情
quote_IO = api.get_quote("CFFEX.IO2002-C-3550")

输出 m1807-C-2450 的最新行情时间和最新价
print(quote_m.datetime, quote_m.last_price)

关闭api,释放资源
api.close()

4.2. 期期期权权权基基基本本本使使使用用用 53

TianQin Python SDK Documentation, Release 3.4.1

4.2.2 o20 -查查查询询询符符符合合合要要要求求求的的的期期期权权权

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'ringo'

from tqsdk import TqApi, TqAuth

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

ls = api.query_options("SHFE.au2012")
print(ls) # 标的为 "SHFE.au2012" 的所有期权

ls = api.query_options("SHFE.au2012", option_class="PUT")
print(ls) # 标的为 "SHFE.au2012" 的看跌期权

ls = api.query_options("SHFE.au2012", option_class="PUT", expired=False)
print(ls) # 标的为 "SHFE.au2012" 的看跌期权, 未下市的

ls = api.query_options("SHFE.au2012", strike_price=340)
print(ls) # 标的为 "SHFE.au2012" 、行权价为 340 的期权

ls = api.query_options("SSE.000300", exchange_id="CFFEX")
print(ls) # 中金所沪深300股指期权

ls = api.query_options("SSE.510300", exchange_id="SSE")
print(ls) # 上交所沪深300etf期权

ls = api.query_options("SSE.510300", exchange_id="SSE", exercise_year=2020, exercise_
→˓month=12)
print(ls) # 上交所沪深300etf期权, 限制条件 2020 年 12 月份行权

api.close()

4.2.3 o30 -查查查询询询平平平值值值/虚虚虚值值值/实实实值值值期期期权权权

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'ringo'

from tqsdk import TqApi, TqAuth

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

quote = api.get_quote("SHFE.au2012")

预计输出的为以au2012现在最新价来比对的认购的平值期权，当没有符合的平值期权时返回为空,如果有返回则格
式为 ["SHFE.au2012C30000"]
ls = api.query_atm_options("SHFE.au2012", quote.last_price, 0, "CALL")

预计输出的为au2012，以开盘价来比对的认购的实值3档，实值2档，实值1档期权，如果没有符合要求的期权则对
应栏返回为None，如果有则返回格式例如 [None,None,"SHFE.au2012C30000"]
ls = api.query_atm_options("SHFE.au2012", quote.open, [3, 2, 1], "CALL")

预计输出的为au2012，以开盘价来比对的认购的实值1档，平值期权，虚值1档，如果没有符合要求的期权则对应栏
返回为None，如果有则返回格式例如

(continues on next page)

54 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

ls = api.query_atm_options("SHFE.au2012", quote.open, [1, 0, -1], "CALL")

预计输出的为au2012，以现在最新价来比对的认购的虚值1档期权
ls = api.query_atm_options("SHFE.au2012", quote.last_price, -1, "CALL")

预计输出沪深300股指期权,2020年12月的虚值1档期权
ls = api.query_atm_options("SSE.000300", quote.last_price, -1, "CALL", exercise_
→˓year=2020, exercise_month=12)

预计输出 上交所 沪深300股指ETF期权,2020年12月的虚值1档期权
ls = api.query_atm_options("SSE.510300", quote.last_price, -1, "CALL", exercise_
→˓year=2020, exercise_month=12)

api.close()

4.2.4 o40 -计计计算算算期期期权权权的的的希希希腊腊腊字字字母母母

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'ringo'

from tqsdk import TqApi, TqAuth
from tqsdk.ta import OPTION_GREEKS

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

获取指定期权行情
quote = api.get_quote("SHFE.cu2006C44000")

获取期权和其对应标的的多合约的 kline 数据
klines = api.get_kline_serial(["SHFE.cu2006C44000", "SHFE.cu2006"], 24 * 60 * 60, 30)

运行 OPTION_GREEKS 希腊值计算函数
greeks = OPTION_GREEKS(klines, quote, 0.025)

输出希腊字母
print(list(greeks["delta"]))
print(list(greeks["theta"]))
print(list(greeks["gamma"]))
print(list(greeks["vega"]))
print(list(greeks["rho"]))

api.close()

4.2. 期期期权权权基基基本本本使使使用用用 55

TianQin Python SDK Documentation, Release 3.4.1

4.2.5 o41 -计计计算算算期期期权权权隐隐隐含含含波波波动动动率率率和和和历历历史史史波波波动动动率率率

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'ringo'

from tqsdk import TqApi, TqAuth
from tqsdk.ta import OPTION_IMPV

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

获取指定期权行情
quote = api.get_quote("SHFE.cu2006C50000")

获取期权和对应标的的多合约 kline
klines = api.get_kline_serial(["SHFE.cu2006C50000", "SHFE.cu2006"], 24 * 60 * 60, 20)

通过 OPTION_IMPV 函数计算隐含波动率，设置无风险利率为 0.025
impv = OPTION_IMPV(klines, quote, 0.025)

print(list(impv["impv"] * 100))

api.close()

4.2.6 o60 -获获获取取取期期期权权权波波波动动动率率率曲曲曲面面面

from tqsdk import TqApi, TqAuth
from tqsdk.ta import VOLATILITY_CURVE

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

获取 m2112 的看跌期权
underlying = "DCE.m2101"
options = api.query_options(underlying_symbol=underlying, option_class="PUT",
→˓expired=False)

批量获取合约的行情信息, 存储结构必须为 dict, key 为合约, value 为行情数据
quote = {}
for symbol in options:

quote[symbol] = api.get_quote(symbol)
options.append(underlying)

klines = api.get_kline_serial(options, 24 * 60 * 60, 20)

使用 VOLATILITY_CURVE 函数计算波动率曲面
vc = VOLATILITY_CURVE(klines, quote, underlying, r=0.025)

print(vc)

api.close()

56 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

4.2.7 o70 -期期期权权权套套套利利利策策策略略略

from tqsdk import TqApi, TqAuth

'''
如果买入看涨期权构建多头期货的价格小于卖出期货价格
存在套利机会则发出双边挂单
'''
api = TqApi(auth=TqAuth("信易账户", "账号密码"))

获取行权价为2950的MA109看涨期权的quote数据
quote_option = api.get_quote('CZCE.MA109C2950')

获取期权对应标的期货，即MA109的quote数据
quote = api.get_quote(quote_option.underlying_symbol)

套利机会尝试次数
times = 0

while True:
api.wait_update()
以对手价来计算买入看涨期权然后行权后的期货成本价格
option_buy = quote_option.strike_price + quote_option.ask_price1
判断当期货的买入1档，即卖出期货价格大于买入看涨期权的期货成本价格，形成套利空间时进行限价下单
if quote.bid_price1 > option_buy and times == 0:

times += 1
以现在卖1档价格买入看涨期权
order_opiton = api.insert_order('CZCE.MA109C2950', "BUY", "OPEN", 1, quote_

→˓option.ask_price1)
以现在买1档的价格卖出期货
order_future = api.insert_order(quote.underlying_symbol, "SELL", "OPEN", 1,

→˓quote.bid_price1)
print("存在期货，期权套利空间尝试买入")

4.2.8 o71 -获获获取取取一一一组组组期期期权权权和和和其其其对对对应应应行行行权权权价价价

from tqsdk import TqApi, TqAuth

'''
获取标的对应看涨期权的期权和行权价对应列表
'''
api = TqApi(auth=TqAuth("信易账户", "账号密码"))

获取沪深300股指期权的认购在市合约
ls = api.query_options("SSE.000300", "CALL", expired=False)

批量获取这些合约的quote合约信息
quote_ls = api.get_quote_list(ls)

option_ls = {}

遍历quote合约信息，将合约和其对应行权价组装成字典
for i in quote_ls:

option_ls[i.instrument_id] = i.strike_price

(continues on next page)

4.2. 期期期权权权基基基本本本使使使用用用 57

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

print(option_ls)

api.close()

4.2.9 o72 -查查查询询询标标标的的的对对对应应应期期期权权权按按按虚虚虚值值值平平平值值值实实实值值值分分分类类类方方方法法法一一一

from tqsdk import TqApi, TqAuth
from datetime import datetime
from tqsdk.tafunc import time_to_datetime

'''
查询标的对应期权按虚值平值实值分类
'''
from tqsdk import TqApi, TqAuth
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.au2112")
in_money_options, at_money_options, out_of_money_options = api.query_all_level_
→˓options("SHFE.au2112", quote.last_price, "CALL")
print(in_money_options) # 实值期权列表
print(at_money_options) # 平值期权列表
print(out_of_money_options) # 虚值期权列表

api.close()

4.2.10 o73 -查查查询询询标标标的的的对对对应应应期期期权权权按按按虚虚虚值值值平平平值值值实实实值值值分分分类类类方方方法法法二二二

from tqsdk import TqApi, TqAuth
from datetime import datetime
from tqsdk.tafunc import time_to_datetime

'''
查询标的对应期权按虚值平值实值分类
'''
from tqsdk import TqApi, TqAuth

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

quote = api.get_quote("SSE.510300")

获取下月的上交所看涨300etf期权
in_money_options, at_money_options, out_of_money_options = api.query_all_level_
→˓finance_options("SSE.510300", quote.last_price, "CALL", nearbys = 1)

print(in_money_options) # 实值期权列表
print(at_money_options) # 平值期权列表
print(out_of_money_options) # 虚值期权列表

api.close()

58 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

4.2.11 o74 -本本本地地地计计计算算算ETF期期期权权权卖卖卖方方方开开开仓仓仓保保保证证证金金金

from tqsdk import TqApi, TqAuth

'''
根据输入的ETF期权来查询该期权的交易所规则下的理论卖方保证金，实际情况请以期货公司收取的一手保证金为准
'''

def etf_margin_cal(symbol):
quote_etf = api.get_quote(symbol)
判断期权标的是不是ETF
if quote_etf.underlying_symbol in ["SSE.510050", "SSE.510300", "SZSE.159919"]:

if quote_etf.option_class == "CALL":
认购期权虚值＝Max（行权价-合约标的前收盘价，0）
call_out_value = max(quote_etf.strike_price - quote_etf.underlying_quote.

→˓pre_close, 0)
认购期权义务仓开仓保证金＝[合约前结算价+Max（12%×合约标的前收盘价-认购期权虚值，7

→˓%×合约标的前收盘价）]×合约单位
call_margin = (quote_etf.pre_settlement + max(0.12 * quote_etf.underlying_

→˓quote.pre_close - call_out_value,
0.07 * quote_etf.underlying_

→˓quote.pre_close)) * quote_etf.volume_multiple
return round(call_margin, 2)

elif quote_etf.option_class == "PUT":
认沽期权虚值＝Max（合约标的前收盘价-行权价，0）
put_out_value = max(quote_etf.underlying_quote.pre_close - quote_etf.

→˓strike_price, 0)
认沽期权义务仓开仓保证金＝Min[合约前结算价+Max（12%×合约标的前收盘价-认沽期权虚值，7

→˓%×行权价），行权价]×合约单位。
put_margin = min(quote_etf.pre_settlement + max(0.12 * quote_etf.

→˓underlying_quote.pre_close - put_out_value,
0.07 * quote_etf.strike_

→˓price),
quote_etf.strike_price) * quote_etf.volume_multiple

return round(put_margin, 2)
else:

print("输入的不是ETF期权合约")
return None

创建api
api = TqApi(auth=TqAuth("信易账户", "账户密码"))

深交所300etf期权
symbol = "SZSE.90000833"

print(etf_margin_cal(symbol))

api.close()

4.2. 期期期权权权基基基本本本使使使用用用 59

TianQin Python SDK Documentation, Release 3.4.1

4.3 算算算法法法模模模块块块示示示例例例

目目目录录录

• 算法模块示例

– twap_table -时间平均加权算法

– vwap_table -交易量平均加权算法

4.3.1 twap_table -时时时间间间平平平均均均加加加权权权算算算法法法

4.3.2 vwap_table -交交交易易易量量量平平平均均均加加加权权权算算算法法法

4.4 交交交易易易策策策略略略示示示例例例

目目目录录录

• 交易策略示例

– Aberration策略 (难度：初级)

– Doublema双均线策略 (难度：初级)

– 价格动量策略 (难度：初级)

– 自动扶梯策略 (难度：初级)

– 菲阿里四价策略 (难度：初级)

– R-Breaker交易策略 -隔夜留仓 (难度：初级)

– R-Breaker交易策略 -非隔夜留仓 (难度：初级)

– Dual Thrust策略 (难度：中级)

– 网格交易策略 (难度：中级)

– 网格交易策略 -异步代码 (难度：中级)

– 随机森林 (难度：中级)

– 海龟交易策略 (难度：中级)

– Volume Weighted Average Price策略 (难度：高级)

60 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

4.4.1 Aberration策策策略略略 (难难难度度度：：：初初初级级级)

策略说明 https://www.shinnytech.com/blog/aberration/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = "Ringo"

'''
Aberration策略 (难度：初级)
参考: https://www.shinnytech.com/blog/aberration/
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

from tqsdk import TqApi, TqAuth, TargetPosTask
from tqsdk.ta import BOLL

设置合约代码
SYMBOL = "DCE.m2105"
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote(SYMBOL)
klines = api.get_kline_serial(SYMBOL, 60 * 60 * 24)
position = api.get_position(SYMBOL)
target_pos = TargetPosTask(api, SYMBOL)

使用BOLL指标计算中轨、上轨和下轨，其中26为周期N ，2为参数p
def boll_line(klines):

boll = BOLL(klines, 26, 2)
midline = boll["mid"].iloc[-1]
topline = boll["top"].iloc[-1]
bottomline = boll["bottom"].iloc[-1]
print("策略运行，中轨：%.2f，上轨为:%.2f，下轨为:%.2f" % (midline, topline, bottomline))
return midline, topline, bottomline

midline, topline, bottomline = boll_line(klines)

while True:
api.wait_update()
每次生成新的K线时重新计算BOLL指标
if api.is_changing(klines.iloc[-1], "datetime"):

midline, topline, bottomline = boll_line(klines)

每次最新价发生变化时进行判断
if api.is_changing(quote, "last_price"):

判断开仓条件
if position.pos_long == 0 and position.pos_short == 0:

如果最新价大于上轨，K线上穿上轨，开多仓
if quote.last_price > topline:

print("K线上穿上轨，开多仓")
target_pos.set_target_volume(20)

如果最新价小于轨，K线下穿下轨，开空仓
elif quote.last_price < bottomline:

print("K线下穿下轨，开空仓")
target_pos.set_target_volume(-20)

else:
print("当前最新价%.2f,未穿上轨或下轨，不开仓" % quote.last_price)

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 61

https://www.shinnytech.com/blog/aberration/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

在多头情况下，空仓条件
elif position.pos_long > 0:

如果最新价低于中线，多头清仓离场
if quote.last_price < midline:

print("最新价低于中线，多头清仓离场")
target_pos.set_target_volume(0)

else:
print("当前多仓，未穿越中线，仓位无变化")

在空头情况下，空仓条件
elif position.pos_short > 0:

如果最新价高于中线，空头清仓离场
if quote.last_price > midline:

print("最新价高于中线，空头清仓离场")
target_pos.set_target_volume(0)

else:
print("当前空仓，未穿越中线，仓位无变化")

4.4.2 Doublema双双双均均均线线线策策策略略略 (难难难度度度：：：初初初级级级)

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

'''
双均线策略
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''
from tqsdk import TqApi, TqAuth, TargetPosTask
from tqsdk.tafunc import ma

SHORT = 30 # 短周期
LONG = 60 # 长周期
SYMBOL = "SHFE.bu2012" # 合约代码

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
print("策略开始运行")

data_length = LONG + 2 # k线数据长度
"duration_seconds=60"为一分钟线, 日线的duration_seconds参数为: 24*60*60
klines = api.get_kline_serial(SYMBOL, duration_seconds=60, data_length=data_length)
target_pos = TargetPosTask(api, SYMBOL)

while True:
api.wait_update()

if api.is_changing(klines.iloc[-1], "datetime"): # 产生新k线:重新计算SMA
short_avg = ma(klines["close"], SHORT) # 短周期
long_avg = ma(klines["close"], LONG) # 长周期

均线下穿，做空
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] > short_avg.

→˓iloc[-1]:
target_pos.set_target_volume(-3)

(continues on next page)

62 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

print("均线下穿，做空")

均线上穿，做多
if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] > long_avg.

→˓iloc[-1]:
target_pos.set_target_volume(3)
print("均线上穿，做多")

4.4.3 价价价格格格动动动量量量策策策略略略 (难难难度度度：：：初初初级级级)

策略说明 https://www.shinnytech.com/blog/momentum-strategy/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = "Ringo"

'''
价格动量 策略 (难度：初级)
参考: https://www.shinnytech.com/blog/momentum-strategy/
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

from tqsdk import TqApi, TqAuth, TargetPosTask

设置指定合约,获取N条K线计算价格动量
SYMBOL = "SHFE.au2012"
N = 15

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial(SYMBOL, 60 * 60 * 24, N)
quote = api.get_quote(SYMBOL)
target_pos = TargetPosTask(api, SYMBOL)
position = api.get_position(SYMBOL)

def AR(kline1):
"""价格动量函数AR，以前N-1日K线计算价格动量ar"""
spread_ho = sum(kline1.high[:-1] - kline1.open[:-1])
spread_oc = sum(kline1.open[:-1] - kline1.low[:-1])
spread_oc 为0时，设置为最小价格跳动值
if spread_oc == 0:

spread_oc = quote.price_tick
ar = (spread_ho / spread_oc) * 100
return ar

ar = AR(klines)
print("策略开始启动")

while True:
api.wait_update()
生成新K线时，重新计算价格动量值ar
if api.is_changing(klines.iloc[-1], "datetime"):

ar = AR(klines)
print("价格动量是：", ar)

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 63

https://www.shinnytech.com/blog/momentum-strategy/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

每次最新价发生变动时，重新进行判断
if api.is_changing(quote, "last_price"):

开仓策略
if position.pos_long == 0 and position.pos_short == 0:

如果ar大于110并且小于150，开多仓
if 110 < ar < 150:

print("价值动量超过110，小于150，做多")
target_pos.set_target_volume(100)

如果ar大于50，小于90，开空仓
elif 50 < ar < 90:

print("价值动量大于50，小于90，做空")
target_pos.set_target_volume(-100)

止损策略，多头下当前ar值小于90则平仓止损，空头下当前ar值大于110则平仓止损
elif (position.pos_long > 0 and ar < 90) or (position.pos_short > 0 and ar >

→˓110):
print("止损平仓")
target_pos.set_target_volume(0)

4.4.4 自自自动动动扶扶扶梯梯梯策策策略略略 (难难难度度度：：：初初初级级级)

策略说明 https://www.shinnytech.com/blog/escalator/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = "Ringo"

'''
自动扶梯 策略 (难度：初级)
参考: https://www.shinnytech.com/blog/escalator/
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

from tqsdk import TqApi, TqAuth, TargetPosTask
from tqsdk.ta import MA

设置合约
SYMBOL = "SHFE.rb2012"
设置均线长短周期
MA_SLOW, MA_FAST = 8, 40

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
klines = api.get_kline_serial(SYMBOL, 60 * 60 * 24)
quote = api.get_quote(SYMBOL)
position = api.get_position(SYMBOL)
target_pos = TargetPosTask(api, SYMBOL)

K线收盘价在这根K线波动范围函数

def kline_range(num):
kl_range = (klines.iloc[num].close - klines.iloc[num].low) / \

(klines.iloc[num].high - klines.iloc[num].low)
return kl_range

(continues on next page)

64 Chapter 4. 示示示例例例程程程序序序

https://www.shinnytech.com/blog/escalator/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

获取长短均线值
def ma_caculate(klines):

ma_slow = MA(klines, MA_SLOW).iloc[-1].ma
ma_fast = MA(klines, MA_FAST).iloc[-1].ma
return ma_slow, ma_fast

ma_slow, ma_fast = ma_caculate(klines)
print("慢速均线为%.2f,快速均线为%.2f" % (ma_slow, ma_fast))

while True:
api.wait_update()
每次k线更新，重新计算快慢均线
if api.is_changing(klines.iloc[-1], "datetime"):

ma_slow, ma_fast = ma_caculate(klines)
print("慢速均线为%.2f,快速均线为%.2f" % (ma_slow, ma_fast))

if api.is_changing(quote, "last_price"):
开仓判断
if position.pos_long == 0 and position.pos_short == 0:

计算前后两根K线在当时K线范围波幅
kl_range_cur = kline_range(-2)
kl_range_pre = kline_range(-3)
开多头判断，最近一根K线收盘价在短期均线和长期均线之上，前一根K线收盘价位于K线波动范围

底部25%，最近这根K线收盘价位于K线波动范围顶部25%
if klines.iloc[-2].close > max(ma_slow, ma_fast) and kl_range_pre <= 0.25

→˓and kl_range_cur >= 0.75:
print("最新价为:%.2f 开多头" % quote.last_price)
target_pos.set_target_volume(100)

开空头判断，最近一根K线收盘价在短期均线和长期均线之下，前一根K线收盘价位于K线波动范围
顶部25%，最近这根K线收盘价位于K线波动范围底部25%

elif klines.iloc[-2].close < min(ma_slow, ma_fast) and kl_range_pre >= 0.
→˓75 and kl_range_cur <= 0.25:

print("最新价为:%.2f 开空头" % quote.last_price)
target_pos.set_target_volume(-100)

else:
print("最新价位:%.2f ，未满足开仓条件" % quote.last_price)

多头持仓止损策略
elif position.pos_long > 0:

在两根K线较低点减一跳，进行多头止损
kline_low = min(klines.iloc[-2].low, klines.iloc[-3].low)
if klines.iloc[-1].close <= kline_low - quote.price_tick:

print("最新价为:%.2f,进行多头止损" % (quote.last_price))
target_pos.set_target_volume(0)

else:
print("多头持仓，当前价格 %.2f,多头离场价格%.2f" %

(quote.last_price, kline_low - quote.price_tick))

空头持仓止损策略
elif position.pos_short > 0:

在两根K线较高点加一跳，进行空头止损
kline_high = max(klines.iloc[-2].high, klines.iloc[-3].high)
if klines.iloc[-1].close >= kline_high + quote.price_tick:

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 65

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

print("最新价为:%.2f 进行空头止损" % quote.last_price)
target_pos.set_target_volume(0)

else:
print("空头持仓，当前价格 %.2f,空头离场价格%.2f" %

(quote.last_price, kline_high + quote.price_tick))

4.4.5 菲菲菲阿阿阿里里里四四四价价价策策策略略略 (难难难度度度：：：初初初级级级)

策略说明 https://www.shinnytech.com/blog/fairy-four-price/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

'''
菲阿里四价 策略(日内突破策略, 在每日收盘前对所持合约进行平仓)
参考: https://www.shinnytech.com/blog/fairy-four-price/
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

from tqsdk import TqApi, TqAuth, TargetPosTask
from datetime import datetime
import time

symbol = "SHFE.ni2012" # 合约代码
close_hour, close_minute = 14, 50 # 平仓时间

api = TqApi(auth=TqAuth("信易账户", "账户密码")) # 使用模拟帐号直连行情和交易服务器
quote = api.get_quote(symbol) # 获取指定合约的盘口行情
klines = api.get_kline_serial(symbol, 24 * 60 * 60) # 获取日线
position = api.get_position(symbol) # 持仓信息
target_pos = TargetPosTask(api, symbol) # 目标持仓

top_rail = klines.high.iloc[-2] # 上轨: 昨日高点
bottom_rail = klines.low.iloc[-2] # 下轨: 昨日低点
print("上轨:", top_rail, ",下轨:", bottom_rail, ",昨日收盘价:", klines.close.iloc[-2], ",
→˓今日开盘价:", klines.open.iloc[-1])

while True:
api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"): # 如果产生一根新日线 (即到达下一个交易

日): 重新获取上下轨
top_rail = klines.high.iloc[-2]
bottom_rail = klines.low.iloc[-2]
print("上轨:", top_rail, ",下轨:", bottom_rail, ",昨日收盘价:", klines.close.

→˓iloc[-2], ",今日开盘价:", klines.open.iloc[-1])

if api.is_changing(quote, "last_price"): # 如果行情最新价发生变化
print("当前最新价", quote.last_price)
开仓突破
if quote.last_price > top_rail and position.pos_long == 0: # 如果价格突破上轨:

→˓买入开仓
print("最新价:", quote.last_price, ", 价格突破上轨,买入开仓")
target_pos.set_target_volume(3) # 设置目标持仓手数，将指定合约调整到目标头寸

elif quote.last_price < bottom_rail and position.pos_short == 0: # 如果价格跌破
下轨: 卖出开仓 (continues on next page)

66 Chapter 4. 示示示例例例程程程序序序

https://www.shinnytech.com/blog/fairy-four-price/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

print("最新价:", quote.last_price, ", 价格跌破下轨, 卖出开仓")
target_pos.set_target_volume(-3)

平仓止损: 当价格 向上突破上轨 或 向下突破下轨 后, 再次回破当日开盘价
if (quote.highest > top_rail and quote.last_price <= quote.open) or (

quote.lowest < bottom_rail and quote.last_price >= quote.open):
print("平仓止损")
target_pos.set_target_volume(0)

if api.is_changing(quote, "datetime"):
now_time = datetime.strptime(quote.datetime, "%Y-%m-%d %H:%M:%S.%f") # 获取当前

的行情时间
if now_time.hour == close_hour and now_time.minute >= close_minute: # 到达平仓

时间: 平仓
print("临近本交易日收盘: 平仓")
target_pos.set_target_volume(0)
deadline = time.time() + 60 # 设置截止时间为当前时间的60秒以后
while api.wait_update(deadline=deadline): # 等待60秒

pass
api.close() # 关闭api
break # 退出while循环

4.4.6 R-Breaker交交交易易易策策策略略略 -隔隔隔夜夜夜留留留仓仓仓 (难难难度度度：：：初初初级级级)

策略说明 https://www.shinnytech.com/blog/r-breaker/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

'''
R-Breaker策略(隔夜留仓) (难度：初级)
参考: https://www.shinnytech.com/blog/r-breaker
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

from tqsdk import TqApi, TqAuth, TargetPosTask

SYMBOL = "SHFE.au2006" # 合约代码
STOP_LOSS_PRICE = 10 # 止损点(价格)

def get_index_line(klines):
'''计算指标线'''
high = klines.high.iloc[-2] # 前一日的最高价
low = klines.low.iloc[-2] # 前一日的最低价
close = klines.close.iloc[-2] # 前一日的收盘价

pivot = (high + low + close) / 3 # 枢轴点
b_break = high + 2 * (pivot - low) # 突破买入价
s_setup = pivot + (high - low) # 观察卖出价
s_enter = 2 * pivot - low # 反转卖出价
b_enter = 2 * pivot - high # 反转买入价
b_setup = pivot - (high - low) # 观察买入价
s_break = low - 2 * (high - pivot) # 突破卖出价

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 67

https://www.shinnytech.com/blog/r-breaker/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

print("已计算新标志线, 枢轴点: %f, 突破买入价: %f, 观察卖出价: %f, 反转卖出价: %f, 反转买入
价: %f, 观察买入价: %f, 突破卖出价: %f"

% (pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break))
return pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote(SYMBOL)
klines = api.get_kline_serial(SYMBOL, 24 * 60 * 60) # 86400: 使用日线
position = api.get_position(SYMBOL)
target_pos = TargetPosTask(api, SYMBOL)
target_pos_value = position.pos_long - position.pos_short # 目标净持仓数
open_position_price = position.open_price_long if target_pos_value > 0 else position.
→˓open_price_short # 开仓价
pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break = get_index_line(klines)
→˓# 七条标准线

while True:
target_pos.set_target_volume(target_pos_value)
api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"): # 产生新k线,则重新计算7条指标线

pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break = get_index_
→˓line(klines)

'''交易规则'''
if api.is_changing(quote, "last_price"):

print("最新价: ", quote.last_price)

开仓价与当前行情价之差大于止损点则止损
if (target_pos_value > 0 and open_position_price - quote.last_price >= STOP_

→˓LOSS_PRICE) or \
(target_pos_value < 0 and quote.last_price - open_position_price >=

→˓STOP_LOSS_PRICE):
target_pos_value = 0 # 平仓

反转:
if target_pos_value > 0: # 多头持仓

if quote.highest > s_setup and quote.last_price < s_enter:
多头持仓,当日内最高价超过观察卖出价后，
盘中价格出现回落，且进一步跌破反转卖出价构成的支撑线时，
采取反转策略，即在该点位反手做空
print("多头持仓,当日内最高价超过观察卖出价后跌破反转卖出价: 反手做空")
target_pos_value = -3 # 做空
open_position_price = quote.last_price

elif target_pos_value < 0: # 空头持仓
if quote.lowest < b_setup and quote.last_price > b_enter:

空头持仓，当日内最低价低于观察买入价后，
盘中价格出现反弹，且进一步超过反转买入价构成的阻力线时，
采取反转策略，即在该点位反手做多
print("空头持仓,当日最低价低于观察买入价后超过反转买入价: 反手做多")
target_pos_value = 3 # 做多
open_position_price = quote.last_price

突破:
elif target_pos_value == 0: # 空仓条件

if quote.last_price > b_break:
(continues on next page)

68 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

在空仓的情况下，如果盘中价格超过突破买入价，
则采取趋势策略，即在该点位开仓做多
print("空仓,盘中价格超过突破买入价: 开仓做多")
target_pos_value = 3 # 做多
open_position_price = quote.last_price

elif quote.last_price < s_break:
在空仓的情况下，如果盘中价格跌破突破卖出价，
则采取趋势策略，即在该点位开仓做空
print("空仓,盘中价格跌破突破卖出价: 开仓做空")
target_pos_value = -3 # 做空
open_position_price = quote.last_price

4.4.7 R-Breaker交交交易易易策策策略略略 -非非非隔隔隔夜夜夜留留留仓仓仓 (难难难度度度：：：初初初级级级)

策略说明 https://www.shinnytech.com/blog/r-breaker/

!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

'''
R-Breaker策略(非隔夜留仓: 在每日收盘前，对所持合约进行平仓)
参考: https://www.shinnytech.com/blog/r-breaker
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

from datetime import datetime
from tqsdk import TqApi, TqAuth, TargetPosTask

SYMBOL = "SHFE.au2006" # 合约代码
CLOSE_HOUR, CLOSE_MINUTE = 14, 50 # 平仓时间
STOP_LOSS_PRICE = 10 # 止损点(价格)

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
print("策略开始运行")

def get_index_line(klines):
'''计算指标线'''
high = klines.high.iloc[-2] # 前一日的最高价
low = klines.low.iloc[-2] # 前一日的最低价
close = klines.close.iloc[-2] # 前一日的收盘价
pivot = (high + low + close) / 3 # 枢轴点
b_break = high + 2 * (pivot - low) # 突破买入价
s_setup = pivot + (high - low) # 观察卖出价
s_enter = 2 * pivot - low # 反转卖出价
b_enter = 2 * pivot - high # 反转买入价
b_setup = pivot - (high - low) # 观察买入价
s_break = low - 2 * (high - pivot) # 突破卖出价
print("已计算新标志线, 枢轴点: %f, 突破买入价: %f, 观察卖出价: %f, 反转卖出价: %f, 反转买入

价: %f, 观察买入价: %f, 突破卖出价: %f"
% (pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break))

return pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 69

https://www.shinnytech.com/blog/r-breaker/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

quote = api.get_quote(SYMBOL)
klines = api.get_kline_serial(SYMBOL, 24 * 60 * 60) # 86400: 使用日线
position = api.get_position(SYMBOL)
target_pos = TargetPosTask(api, SYMBOL)
target_pos_value = position.pos_long - position.pos_short # 目标净持仓数
open_position_price = position.open_price_long if target_pos_value > 0 else position.
→˓open_price_short # 开仓价
pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break = get_index_line(klines)
→˓# 七条标准线

while True:
target_pos.set_target_volume(target_pos_value)
api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"): # 产生新k线,则重新计算7条指标线

pivot, b_break, s_setup, s_enter, b_enter, b_setup, s_break = get_index_
→˓line(klines)

if api.is_changing(quote, "datetime"):
now = datetime.strptime(quote.datetime, "%Y-%m-%d %H:%M:%S.%f")
if now.hour == CLOSE_HOUR and now.minute >= CLOSE_MINUTE: # 到达平仓时间: 平仓

print("临近本交易日收盘: 平仓")
target_pos_value = 0 # 平仓
pivot = b_break = s_setup = s_enter = b_enter = b_setup = s_break = float(

→˓"nan") # 修改各指标线的值, 避免平仓后再次触发

'''交易规则'''
if api.is_changing(quote, "last_price"):

print("最新价: %f" % quote.last_price)

开仓价与当前行情价之差大于止损点则止损
if (target_pos_value > 0 and open_position_price - quote.last_price >= STOP_

→˓LOSS_PRICE) or \
(target_pos_value < 0 and quote.last_price - open_position_price >=

→˓STOP_LOSS_PRICE):
target_pos_value = 0 # 平仓

反转:
if target_pos_value > 0: # 多头持仓

if quote.highest > s_setup and quote.last_price < s_enter:
多头持仓,当日内最高价超过观察卖出价后，
盘中价格出现回落，且进一步跌破反转卖出价构成的支撑线时，
采取反转策略，即在该点位反手做空
print("多头持仓,当日内最高价超过观察卖出价后跌破反转卖出价: 反手做空")
target_pos_value = -3 # 做空
open_position_price = quote.last_price

elif target_pos_value < 0: # 空头持仓
if quote.lowest < b_setup and quote.last_price > b_enter:

空头持仓，当日内最低价低于观察买入价后，
盘中价格出现反弹，且进一步超过反转买入价构成的阻力线时，
采取反转策略，即在该点位反手做多
print("空头持仓,当日最低价低于观察买入价后超过反转买入价: 反手做多")
target_pos_value = 3 # 做多
open_position_price = quote.last_price

突破:
elif target_pos_value == 0: # 空仓条件

if quote.last_price > b_break:
(continues on next page)

70 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

在空仓的情况下，如果盘中价格超过突破买入价，
则采取趋势策略，即在该点位开仓做多
print("空仓,盘中价格超过突破买入价: 开仓做多")
target_pos_value = 3 # 做多
open_position_price = quote.last_price

elif quote.last_price < s_break:
在空仓的情况下，如果盘中价格跌破突破卖出价，
则采取趋势策略，即在该点位开仓做空
print("空仓,盘中价格跌破突破卖出价: 开仓做空")
target_pos_value = -3 # 做空
open_position_price = quote.last_price

4.4.8 Dual Thrust策策策略略略 (难难难度度度：：：中中中级级级)

策略说明 https://www.shinnytech.com/blog/dual-thrust/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

'''
Dual Thrust策略 (难度：中级)
参考: https://www.shinnytech.com/blog/dual-thrust
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

from tqsdk import TqApi, TqAuth, TargetPosTask

SYMBOL = "DCE.jd2011" # 合约代码
NDAY = 5 # 天数
K1 = 0.2 # 上轨K值
K2 = 0.2 # 下轨K值

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
print("策略开始运行")

quote = api.get_quote(SYMBOL)
klines = api.get_kline_serial(SYMBOL, 24 * 60 * 60) # 86400使用日线
target_pos = TargetPosTask(api, SYMBOL)

def dual_thrust(quote, klines):
current_open = klines.iloc[-1]["open"]
HH = max(klines.high.iloc[-NDAY - 1:-1]) # N日最高价的最高价
HC = max(klines.close.iloc[-NDAY - 1:-1]) # N日收盘价的最高价
LC = min(klines.close.iloc[-NDAY - 1:-1]) # N日收盘价的最低价
LL = min(klines.low.iloc[-NDAY - 1:-1]) # N日最低价的最低价
range = max(HH - LC, HC - LL)
buy_line = current_open + range * K1 # 上轨
sell_line = current_open - range * K2 # 下轨
print("当前开盘价: %f, 上轨: %f, 下轨: %f" % (current_open, buy_line, sell_line))
return buy_line, sell_line

buy_line, sell_line = dual_thrust(quote, klines) # 获取上下轨

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 71

https://www.shinnytech.com/blog/dual-thrust/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

while True:
api.wait_update()
if api.is_changing(klines.iloc[-1], ["datetime", "open"]): # 新产生一根日线或开盘价发

生变化: 重新计算上下轨
buy_line, sell_line = dual_thrust(quote, klines)

if api.is_changing(quote, "last_price"):
if quote.last_price > buy_line: # 高于上轨

print("高于上轨,目标持仓 多头3手")
target_pos.set_target_volume(3) # 交易

elif quote.last_price < sell_line: # 低于下轨
print("低于下轨,目标持仓 空头3手")
target_pos.set_target_volume(-3) # 交易

else:
print('未穿越上下轨,不调整持仓')

4.4.9 网网网格格格交交交易易易策策策略略略 (难难难度度度：：：中中中级级级)

策略说明 https://www.shinnytech.com/blog/grid-trading/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

"""
网格交易策略 (难度：中级)
参考: https://www.shinnytech.com/blog/grid-trading/
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
"""

from functools import reduce
from tqsdk import TqApi, TqAuth, TargetPosTask

SYMBOL = "DCE.jd2011" # 合约代码
START_PRICE = 4247 # 起始价位
GRID_AMOUNT = 10 # 网格在多头、空头方向的格子(档位)数量

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
grid_region_long = [0.005] * GRID_AMOUNT # 多头每格价格跌幅(网格密度)
grid_region_short = [0.005] * GRID_AMOUNT # 空头每格价格涨幅(网格密度)
grid_volume_long = [i for i in range(GRID_AMOUNT + 1)] # 多头每格持仓手数
grid_volume_short = [i for i in range(GRID_AMOUNT + 1)] # 空头每格持仓手数
grid_prices_long = [reduce(lambda p, r: p * (1 - r), grid_region_long[:i], START_
→˓PRICE) for i in

range(GRID_AMOUNT + 1)] # 多头每格的触发价位列表
grid_prices_short = [reduce(lambda p, r: p * (1 + r), grid_region_short[:i], START_
→˓PRICE) for i in

range(GRID_AMOUNT + 1)] # 空头每格的触发价位列表

print("策略开始运行, 起始价位: %f, 多头每格持仓手数:%s, 多头每格的价位:%s, 空头每格的价位:%s" % (
START_PRICE, grid_volume_long, grid_prices_long, grid_prices_short))
quote = api.get_quote(SYMBOL) # 行情数据
target_pos = TargetPosTask(api, SYMBOL)
position = api.get_position(SYMBOL) # 持仓信息

(continues on next page)

72 Chapter 4. 示示示例例例程程程序序序

https://www.shinnytech.com/blog/grid-trading/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

def wait_price(layer):
"""等待行情最新价变动到其他档位,则进入下一档位或回退到上一档位; 如果从下一档位回退到当前档位,则设

置为当前对应的持仓手数;
layer : 当前所在第几个档位层次; layer>0 表示多头方向, layer<0 表示空头方向

"""
if layer > 0 or quote.last_price <= grid_prices_long[1]: # 是多头方向

while True:
api.wait_update()
如果当前档位小于最大档位,并且最新价小于等于下一个档位的价格: 则设置为下一档位对应的手

数后进入下一档位层次
if layer < GRID_AMOUNT and quote.last_price <= grid_prices_long[layer +

→˓1]:
target_pos.set_target_volume(grid_volume_long[layer + 1])
print("最新价: %f, 进入: 多头第 %d 档" % (quote.last_price, layer + 1))
wait_price(layer + 1)
从下一档位回退到当前档位后, 设置回当前对应的持仓手数
target_pos.set_target_volume(grid_volume_long[layer + 1])

如果最新价大于当前档位的价格: 则回退到上一档位
if quote.last_price > grid_prices_long[layer]:

print("最新价: %f, 回退到: 多头第 %d 档" % (quote.last_price, layer))
return

elif layer < 0 or quote.last_price >= grid_prices_short[1]: # 是空头方向
layer = -layer # 转为正数便于计算
while True:

api.wait_update()
如果当前档位小于最大档位层次,并且最新价大于等于下一个档位的价格: 则设置为下一档位对应

的持仓手数后进入下一档位层次
if layer < GRID_AMOUNT and quote.last_price >= grid_prices_short[layer +

→˓1]:
target_pos.set_target_volume(-grid_volume_short[layer + 1])
print("最新价: %f, 进入: 空头第 %d 档" % (quote.last_price, layer + 1))
wait_price(-(layer + 1))
从下一档位回退到当前档位后, 设置回当前对应的持仓手数
target_pos.set_target_volume(-grid_volume_short[layer + 1])

如果最新价小于当前档位的价格: 则回退到上一档位
if quote.last_price < grid_prices_short[layer]:

print("最新价: %f, 回退到: 空头第 %d 档" % (quote.last_price, layer))
return

while True:
api.wait_update()
wait_price(0) # 从第0层开始进入网格
target_pos.set_target_volume(0)

4.4. 交交交易易易策策策略略略示示示例例例 73

TianQin Python SDK Documentation, Release 3.4.1

4.4.10 网网网格格格交交交易易易策策策略略略 -异异异步步步代代代码码码 (难难难度度度：：：中中中级级级)

策略说明 https://www.shinnytech.com/blog/grid-trading/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'chengzhi'

"""
网格交易策略
参考: https://www.shinnytech.com/blog/grid-trading/
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
"""

from functools import reduce
from contextlib import closing
from tqsdk import TqApi, TqAuth, TargetPosTask

网格计划参数:
symbol = "DCE.jd2011" # 合约代码
start_price = 4247 # 起始价位
grid_amount = 10 # 网格在多头、空头方向的格子(档位)数量
grid_region_long = [0.005] * grid_amount # 多头每格价格跌幅(网格密度)
grid_region_short = [0.005] * grid_amount # 空头每格价格涨幅(网格密度)
grid_volume_long = [1] * grid_amount # 多头每格交易手数
grid_volume_short = [-1] * grid_amount # 空头每格交易手数
grid_prices_long = [reduce(lambda p, r: p*(1-r), grid_region_long[:i], start_price)
→˓for i in range(grid_amount + 1)] # 多头每格的触发价位列表, 第一个元素为起始价位
grid_prices_short = [reduce(lambda p, r: p*(1+r), grid_region_short[:i], start_price)
→˓for i in range(grid_amount + 1)] # 空头每格的触发价位列表, 第一个元素为起始价位

print("起始价位:", start_price)
print("多头每格交易量:", grid_volume_long)
print("多头每格的价位:", grid_prices_long)
print("空头每格的价位:", grid_prices_short)

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote(symbol) # 行情数据
target_pos = TargetPosTask(api, symbol)
target_volume = 0 # 目标持仓手数

async def price_watcher(open_price, close_price, volume):
"""该task在价格触发开仓价时开仓，触发平仓价时平仓"""
global target_volume
async with api.register_update_notify(quote) as update_chan: # 当 quote 有更新时会发

送通知到 update_chan 上
while True:

async for _ in update_chan: # 当从 update_chan 上收到行情更新通知时判断是否触发
开仓条件

if (volume > 0 and quote.last_price <= open_price) or (volume < 0 and
→˓quote.last_price >= open_price):

break
target_volume += volume
target_pos.set_target_volume(target_volume)
print("时间:", quote.datetime, "最新价:", quote.last_price, "开仓", volume,

→˓"手", "总仓位:", target_volume, "手")
async for _ in update_chan: # 当从 update_chan 上收到行情更新通知时判断是否触发

平仓条件 (continues on next page)

74 Chapter 4. 示示示例例例程程程序序序

https://www.shinnytech.com/blog/grid-trading/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

if (volume > 0 and quote.last_price > close_price) or (volume < 0 and
→˓quote.last_price < close_price):

break
target_volume -= volume
target_pos.set_target_volume(target_volume)
print("时间:", quote.datetime, "最新价:", quote.last_price, "平仓", volume,

→˓"手", "总仓位:", target_volume, "手")

for i in range(grid_amount):
api.create_task(price_watcher(grid_prices_long[i+1], grid_prices_long[i], grid_

→˓volume_long[i]))
api.create_task(price_watcher(grid_prices_short[i+1], grid_prices_short[i], grid_

→˓volume_short[i]))

with closing(api):
while True:

api.wait_update()

4.4.11 随随随机机机森森森林林林 (难难难度度度：：：中中中级级级)

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

import pandas as pd
import datetime
from contextlib import closing
from tqsdk import TqApi, TqAuth, TqBacktest, BacktestFinished, TargetPosTask
from tqsdk.tafunc import sma, ema2, trma
from sklearn.ensemble import RandomForestClassifier

pd.set_option('display.max_rows', None) # 设置Pandas显示的行数
pd.set_option('display.width', None) # 设置Pandas显示的宽度

'''
应用随机森林对某交易日涨跌情况的预测(使用sklearn包)
参考:https://www.joinquant.com/post/1571
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

symbol = "SHFE.ru1811" # 交易合约代码
close_hour, close_minute = 14, 50 # 预定收盘时间(因为真实收盘后无法进行交易, 所以提前设定收盘时
间)

def get_prediction_data(klines, n):
"""获取用于随机森林的n个输入数据(n为数据长度): n天中每天的特征参数及其涨跌情况"""
close_prices = klines.close[- 30 - n:] # 获取本交易日及以前的收盘价(此时在预定的收盘时

间: 认为本交易日已收盘)
计算所需指标
sma_data = sma(close_prices, 30, 0.02)[-n:] # SMA指标, 函数默认时间周期参数:30
wma_data = ema2(close_prices, 30)[-n:] # WMA指标
mom_data = trma(close_prices, 30)[-n:] # MOM指标
x_all = list(zip(sma_data, wma_data, mom_data)) # 样本特征组

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 75

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

y_all = list(klines.close.iloc[i] >= klines.close.iloc[i - 1] for i in
→˓list(reversed(range(-1, -n - 1, -1)))) # 样本标签组

x_all: 大前天指标 前天指标 昨天指标 (今天指标)
y_all: (大前天) 前天 昨天 今天 -明天-
准备算法需要用到的数据
x_train = x_all[: -1] # 训练数据: 特征
x_predict = x_all[-1] # 预测数据(用本交易日的指标预测下一交易日的涨跌)
y_train = y_all[1:] # 训练数据: 标签 (去掉第一个数据后让其与指标隔一位对齐(例如: 昨天的特征

→˓-> 对应预测今天的涨跌标签))

return x_train, y_train, x_predict

predictions = [] # 用于记录每次的预测结果(在每个交易日收盘时用收盘数据预测下一交易日的涨跌,并记录
在此列表里)
api = TqApi(backtest=TqBacktest(start_dt=datetime.date(2018, 7, 2), end_dt=datetime.
→˓date(2018, 9, 26)), auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote(symbol)
klines = api.get_kline_serial(symbol, duration_seconds=24 * 60 * 60) # 日线
target_pos = TargetPosTask(api, symbol)
with closing(api):

try:
while True:

while not api.is_changing(klines.iloc[-1], "datetime"): # 等到达下一个交易日
api.wait_update()

while True:
api.wait_update()
在收盘后预测下一交易日的涨跌情况
if api.is_changing(quote, "datetime"):

now = datetime.datetime.strptime(quote.datetime, "%Y-%m-%d %H:%M:
→˓%S.%f") # 当前quote的时间

判断是否到达预定收盘时间: 如果到达 则认为本交易日收盘, 此时预测下一交易日的
涨跌情况, 并调整为对应仓位

if now.hour == close_hour and now.minute >= close_minute:
1- 获取数据
x_train, y_train, x_predict = get_prediction_data(klines, 75)

→˓ # 参数1: K线, 参数2:需要的数据长度

2- 利用机器学习算法预测下一个交易日的涨跌情况
n_estimators 参数: 选择森林里（决策）树的数目; bootstrap 参数: 选择

建立决策树时，是否使用有放回抽样
clf = RandomForestClassifier(n_estimators=30, bootstrap=True)
clf.fit(x_train, y_train) # 传入训练数据, 进行参数训练
predictions.append(bool(clf.predict([x_predict]))) # 传入测试数

据进行预测, 得到预测的结果

3- 进行交易
if predictions[-1] == True: # 如果预测结果为涨: 买入

print(quote.datetime, "预测下一交易日为 涨")
target_pos.set_target_volume(10)

else: # 如果预测结果为跌: 卖出
print(quote.datetime, "预测下一交易日为 跌")
target_pos.set_target_volume(-10)

break

except BacktestFinished: # 回测结束, 获取预测结果，统计正确率
klines["pre_close"] = klines["close"].shift(1) # 增加 pre_close(上一交易日的收盘

价) 字段 (continues on next page)

76 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

klines = klines[-len(predictions) + 1:] # 取出在回测日期内的K线数据
klines["prediction"] = predictions[:-1] # 增加预测的本交易日涨跌情况字段(向后移一个

数据目的: 将 本交易日对应下一交易日的涨跌 调整为 本交易日对应本交易日的涨跌)
results = (klines["close"] - klines["pre_close"] >= 0) == klines["prediction"]

print(klines)
print("----回测结束----")
print("预测结果正误:\n", results)
print("预测结果数目统计: 总计", len(results),"个预测结果")
print(pd.value_counts(results))
print("预测的准确率:")
print((pd.value_counts(results)[True]) / len(results))

4.4.12 海海海龟龟龟交交交易易易策策策略略略 (难难难度度度：：：中中中级级级)

策略说明 https://www.shinnytech.com/blog/turtle/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

'''
海龟策略 (难度：中级)
参考: https://www.shinnytech.com/blog/turtle/
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

import json
import time
from tqsdk import TqApi, TqAuth, TargetPosTask
from tqsdk.ta import ATR

class Turtle:
def __init__(self, symbol, account=None, auth=None, donchian_channel_open_

→˓position=20,
donchian_channel_stop_profit=10,
atr_day_length=20, max_risk_ratio=0.5):

self.account = account # 交易账号
self.auth = auth # 信易账户
self.symbol = symbol # 合约代码
self.donchian_channel_open_position = donchian_channel_open_position # 唐奇安通

道的天数周期(开仓)
self.donchian_channel_stop_profit = donchian_channel_stop_profit # 唐奇安通道的

天数周期(止盈)
self.atr_day_length = atr_day_length # ATR计算所用天数
self.max_risk_ratio = max_risk_ratio # 最高风险度
self.state = {

"position": 0, # 本策略净持仓数(正数表示多头，负数表示空头，0表示空仓)
"last_price": float("nan"), # 上次调仓价

}

self.n = 0 # 平均真实波幅(N值)
self.unit = 0 # 买卖单位
self.donchian_channel_high = 0 # 唐奇安通道上轨

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 77

https://www.shinnytech.com/blog/turtle/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

self.donchian_channel_low = 0 # 唐奇安通道下轨

self.api = TqApi(self.account, auth=self.auth)
self.quote = self.api.get_quote(self.symbol)
由于ATR是路径依赖函数，因此使用更长的数据序列进行计算以便使其值稳定下来
kline_length = max(donchian_channel_open_position + 1, donchian_channel_stop_

→˓profit + 1, atr_day_length * 5)
self.klines = self.api.get_kline_serial(self.symbol, 24 * 60 * 60, data_

→˓length=kline_length)
self.account = self.api.get_account()
self.target_pos = TargetPosTask(self.api, self.symbol)

def recalc_paramter(self):
平均真实波幅(N值)
self.n = ATR(self.klines, self.atr_day_length)["atr"].iloc[-1]
买卖单位
self.unit = int((self.account.balance * 0.01) / (self.quote.volume_multiple *

→˓self.n))
唐奇安通道上轨：前N个交易日的最高价
self.donchian_channel_high = max(self.klines.high[-self.donchian_channel_open_

→˓position - 1:-1])
唐奇安通道下轨：前N个交易日的最低价
self.donchian_channel_low = min(self.klines.low[-self.donchian_channel_open_

→˓position - 1:-1])
print("唐其安通道上下轨: %f, %f" % (self.donchian_channel_high, self.donchian_

→˓channel_low))
return True

def set_position(self, pos):
self.state["position"] = pos
self.state["last_price"] = self.quote["last_price"]
self.target_pos.set_target_volume(self.state["position"])

def try_open(self):
"""开仓策略"""
while self.state["position"] == 0:

self.api.wait_update()
if self.api.is_changing(self.klines.iloc[-1], "datetime"): # 如果产生新k线,

→˓则重新计算唐奇安通道及买卖单位
self.recalc_paramter()

if self.api.is_changing(self.quote, "last_price"):
print("最新价: %f" % self.quote.last_price)
if self.quote.last_price > self.donchian_channel_high: # 当前价>唐奇安通

道上轨，买入1个Unit；(持多仓)
print("当前价>唐奇安通道上轨，买入1个Unit(持多仓): %d 手" % self.unit)
self.set_position(self.state["position"] + self.unit)

elif self.quote.last_price < self.donchian_channel_low: # 当前价<唐奇安
通道下轨，卖出1个Unit；(持空仓)

print("当前价<唐奇安通道下轨，卖出1个Unit(持空仓): %d 手" % self.unit)
self.set_position(self.state["position"] - self.unit)

def try_close(self):
"""交易策略"""
while self.state["position"] != 0:

self.api.wait_update()
if self.api.is_changing(self.quote, "last_price"):

print("最新价: ", self.quote.last_price)
(continues on next page)

78 Chapter 4. 示示示例例例程程程序序序

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

if self.state["position"] > 0: # 持多单
加仓策略: 如果是多仓且行情最新价在上一次建仓（或者加仓）的基础上又上涨了0.

→˓5N，就再加一个Unit的多仓,并且风险度在设定范围内(以防爆仓)
if self.quote.last_price >= self.state[

"last_price"] + 0.5 * self.n and self.account.risk_ratio <=
→˓self.max_risk_ratio:

print("加仓:加1个Unit的多仓")
self.set_position(self.state["position"] + self.unit)

止损策略: 如果是多仓且行情最新价在上一次建仓（或者加仓）的基础上又下跌了2N，
就卖出全部头寸止损

elif self.quote.last_price <= self.state["last_price"] - 2 * self.
→˓n:

print("止损:卖出全部头寸")
self.set_position(0)

止盈策略: 如果是多仓且行情最新价跌破了10日唐奇安通道的下轨，就清空所有头寸结
束策略,离场

if self.quote.last_price <= min(self.klines.low[-self.donchian_
→˓channel_stop_profit - 1:-1]):

print("止盈:清空所有头寸结束策略,离场")
self.set_position(0)

elif self.state["position"] < 0: # 持空单
加仓策略: 如果是空仓且行情最新价在上一次建仓（或者加仓）的基础上又下跌了0.

→˓5N，就再加一个Unit的空仓,并且风险度在设定范围内(以防爆仓)
if self.quote.last_price <= self.state[

"last_price"] - 0.5 * self.n and self.account.risk_ratio <=
→˓self.max_risk_ratio:

print("加仓:加1个Unit的空仓")
self.set_position(self.state["position"] - self.unit)

止损策略: 如果是空仓且行情最新价在上一次建仓（或者加仓）的基础上又上涨了2N，
就平仓止损

elif self.quote.last_price >= self.state["last_price"] + 2 * self.
→˓n:

print("止损:卖出全部头寸")
self.set_position(0)

止盈策略: 如果是空仓且行情最新价升破了10日唐奇安通道的上轨，就清空所有头寸结
束策略,离场

if self.quote.last_price >= max(self.klines.high[-self.donchian_
→˓channel_stop_profit - 1:-1]):

print("止盈:清空所有头寸结束策略,离场")
self.set_position(0)

def strategy(self):
"""海龟策略"""
print("等待K线及账户数据...")
deadline = time.time() + 5
while not self.recalc_paramter():

if not self.api.wait_update(deadline=deadline):
raise Exception("获取数据失败，请确认行情连接正常并已经登录交易账户")

while True:
self.try_open()
self.try_close()

turtle = Turtle("SHFE.au2006")
print("策略开始运行")

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 79

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

try:
turtle.state = json.load(open("turtle_state.json", "r")) # 读取数据: 本策略目标净持仓

数,上一次开仓价
except FileNotFoundError:

pass
print("当前持仓数: %d, 上次调仓价: %f" % (turtle.state["position"], turtle.state["last_
→˓price"]))
try:

turtle.strategy()
finally:

turtle.api.close()
json.dump(turtle.state, open("turtle_state.json", "w")) # 保存数据

4.4.13 Volume Weighted Average Price策策策略略略 (难难难度度度：：：高高高级级级)

策略说明 https://www.shinnytech.com/blog/vwap/

#!/usr/bin/env python
-*- coding: utf-8 -*-
__author__ = 'limin'

'''
Volume Weighted Average Price策略 (难度：高级)
参考: https://www.shinnytech.com/blog/vwap
注: 该示例策略仅用于功能示范, 实盘时请根据自己的策略/经验进行修改
'''

import datetime
from tqsdk import TqApi, TqAuth, TargetPosTask

TIME_CELL = 5 * 60 # 等时长下单的时间单元, 单位: 秒
TARGET_VOLUME = 300 # 目标交易手数 (>0: 多头, <0: 空头)
SYMBOL = "DCE.jd2001" # 交易合约代码
HISTORY_DAY_LENGTH = 20 # 使用多少天的历史数据用来计算每个时间单元的下单手数
START_HOUR, START_MINUTE = 9, 35 # 计划交易时段起始时间点
END_HOUR, END_MINUTE = 10, 50 # 计划交易时段终点时间点

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
print("策略开始运行")
根据 HISTORY_DAY_LENGTH 推算出需要订阅的历史数据长度, 需要注意history_day_length与time_
→˓cell的比例关系以避免超过订阅限制
time_slot_start = datetime.time(START_HOUR, START_MINUTE) # 计划交易时段起始时间点
time_slot_end = datetime.time(END_HOUR, END_MINUTE) # 计划交易时段终点时间点
klines = api.get_kline_serial(SYMBOL, TIME_CELL, data_length=int(10 * 60 * 60 / TIME_
→˓CELL * HISTORY_DAY_LENGTH))
target_pos = TargetPosTask(api, SYMBOL)
position = api.get_position(SYMBOL) # 持仓信息

def get_kline_time(kline_datetime):
"""获取k线的时间(不包含日期)"""
kline_time = datetime.datetime.fromtimestamp(kline_datetime // 1000000000).time()

→˓ # 每根k线的时间
return kline_time

(continues on next page)

80 Chapter 4. 示示示例例例程程程序序序

https://www.shinnytech.com/blog/vwap/

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

def get_market_day(kline_datetime):
"""获取k线所对应的交易日"""
kline_dt = datetime.datetime.fromtimestamp(kline_datetime // 1000000000) # 每根k线

的日期和时间
if kline_dt.hour >= 18: # 当天18点以后: 移到下一个交易日

kline_dt = kline_dt + datetime.timedelta(days=1)
while kline_dt.weekday() >= 5: # 是周六或周日,移到周一

kline_dt = kline_dt + datetime.timedelta(days=1)
return kline_dt.date()

添加辅助列: time及date, 分别为K线时间的时:分:秒和其所属的交易日
klines["time"] = klines.datetime.apply(lambda x: get_kline_time(x))
klines["date"] = klines.datetime.apply(lambda x: get_market_day(x))

获取在预设交易时间段内的所有K线, 即时间位于 time_slot_start 到 time_slot_end 之间的数据
if time_slot_end > time_slot_start: # 判断是否类似 23:00:00 开始， 01:00:00 结束这样跨天的
情况

klines = klines[(klines["time"] >= time_slot_start) & (klines["time"] <= time_
→˓slot_end)]
else:

klines = klines[(klines["time"] >= time_slot_start) | (klines["time"] <= time_
→˓slot_end)]

由于可能有节假日导致部分天并没有填满整个预设交易时间段
因此去除缺失部分交易时段的日期(即剩下的每个日期都包含预设的交易时间段内所需的全部时间单元)
date_cnt = klines["date"].value_counts()
max_num = date_cnt.max() # 所有日期中最完整的交易时段长度
need_date = date_cnt[date_cnt == max_num].sort_index().index[-HISTORY_DAY_LENGTH - 1:-
→˓1] # 获取今天以前的预设数目个交易日的日期
df = klines[klines["date"].isin(need_date)] # 最终用来计算的k线数据

计算每个时间单元的成交量占比, 并使用算数平均计算出预测值
datetime_grouped = df.groupby(['date', 'time'])['volume'].sum() # 将K线的volume按
照date、time建立多重索引分组
计算每个交易日内的预设交易时间段内的成交量总和(level=0: 表示按第一级索引"data"来分组)后,将每根k线
的成交量除以所在交易日内的总成交量,计算其所占比例
volume_percent = datetime_grouped / datetime_grouped.groupby(level=0).sum()
predicted_percent = volume_percent.groupby(level=1).mean() # 将历史上相同时间单元的成交量
占比使用算数平均计算出预测值
print("各时间单元成交量占比: %s" % predicted_percent)

计算每个时间单元的成交量预测值
predicted_volume = {} # 记录每个时间单元需调整的持仓量
percentage_left = 1 # 剩余比例
volume_left = TARGET_VOLUME # 剩余手数
for index, value in predicted_percent.items():

volume = round(volume_left * (value / percentage_left))
predicted_volume[index] = volume
percentage_left -= value
volume_left -= volume

print("各时间单元应下单手数: %s" % predicted_volume)

交易
current_volume = 0 # 记录已调整持仓量
while True:

(continues on next page)

4.4. 交交交易易易策策策略略略示示示例例例 81

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

api.wait_update()
新产生一根K线并且在计划交易时间段内: 调整目标持仓量
if api.is_changing(klines.iloc[-1], "datetime"):

t = datetime.datetime.fromtimestamp(klines.iloc[-1]["datetime"] //
→˓1000000000).time()

if t in predicted_volume:
current_volume += predicted_volume[t]
print("到达下一时间单元,调整持仓为: %d" % current_volume)
target_pos.set_target_volume(current_volume)

用持仓信息判断是否完成所有目标交易手数
if api.is_changing(position, "volume_long") or api.is_changing(position, "volume_

→˓short"):
if position["volume_long"] - position["volume_short"] == TARGET_VOLUME:

break

api.close()

82 Chapter 4. 示示示例例例程程程序序序

83

TianQin Python SDK Documentation, Release 3.4.1

CHAPTER

FIVE

TQSDK模模模块块块参参参考考考

5.1 tqsdk.TqApi -框框框架架架及及及核核核心心心业业业务务务

5.2 tqsdk.TqAuth -用用用户户户认认认证证证类类类

5.3 tqsdk.TqAccount -实实实盘盘盘账账账户户户类类类

5.4 tqsdk.TqKq -快快快期期期模模模拟拟拟交交交易易易类类类

5.5 tqsdk.TqKqStock -快快快期期期股股股票票票模模模拟拟拟交交交易易易类类类

5.6 tqsdk.TqSim -本本本地地地模模模拟拟拟交交交易易易

5.7 tqsdk.TqSimStock -本本本地地地股股股票票票模模模拟拟拟交交交易易易

5.8 tqsdk.TqMultiAccount -多多多账账账户户户

5.9 tqsdk.objs -业业业务务务对对对象象象

5.10 tqsdk.lib -业业业务务务工工工具具具库库库

5.10.1 tqsdk.TqNotify -收收收集集集通通通知知知信信信息息息工工工具具具

5.10.2 tqsdk.TargetPosTask -目目目标标标持持持仓仓仓工工工具具具

5.10.3 tqsdk.TargetPosScheduler -基基基于于于时时时间间间维维维度度度的的的目目目标标标持持持仓仓仓工工工具具具

5.11 tqsdk.ta -技技技术术术指指指标标标计计计算算算函函函数数数

5.12 tqsdk.tafunc -序序序列列列计计计算算算函函函数数数

5.13 tqsdk.TqBacktest -策策策略略略回回回测测测

5.14 tqsdk.algorithm -算算算法法法模模模块块块

5.14.1 tqsdk.algorithm.twap - Twap算算算法法法

5.14.2 tqsdk.algorithm.time_table_generater -生生生成成成 time_table辅辅辅助助助函函函数数数

5.15 tqsdk.risk_rule -风风风控控控类类类模模模块块块

5.16 tqsdk.tools.DataDownloader -数数数据据据下下下载载载工工工具具具

5.17 tqsdk.exceptions -抛抛抛出出出例例例外外外

84 Chapter 5. TqSdk模模模块块块参参参考考考

CHAPTER

SIX

进进进阶阶阶主主主题题题

这一部分内容提供给有经验的 TqSdk用户,主要讲解将 TqSdk用于实际工作时的一些重要问题的处理方案和
最佳实践.

6.1 高高高级级级委委委托托托指指指令令令

在实盘交易中,除常见的限价委托指令外, tqsdk提供了 FAK / FOK两种高级市价指令。

insert_order为用户提供了 limit_price，advanced两个参数指定下单指令，两个参数支持的值的组合为：

limit_price advanced memo
指定价格 None 限价指令，即时成交，当日有效

指定价格 FAK 限价指令，即时成交剩余撤销

指定价格 FOK 限价指令，即时全部成交或撤销

None None 市价指令，即时成交剩余撤销

None FAK 市价指令，即时成交剩余撤销

None FOK 市价指令，即时全部成交或撤销

BEST None 最优一档即时成交剩余撤销指令

BEST FAK 最优一档即时成交剩余撤销指令

FIVELEVEL None 最优五档即时成交剩余撤销指令

FIVELEVEL FAK 最优五档即时成交剩余撤销指令

• limit_price默认值为 None

• advance默认值为 None

• 对于市价单、BEST、FIVELEVEL，advanced="FAK"与默认参数 None的实际报单请求一样。

例如:

from tqsdk import TqApi, TqAuth

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
当日有效限价单
api.insert_order("SHFE.cu2009", "BUY", "OPEN", 3, limit_price=14200)
FAK 限价单
api.insert_order("SHFE.cu2009", "BUY", "OPEN", 3, limit_price=14200, advanced="FAK")
FOK 限价单
api.insert_order("SHFE.cu2009", "BUY", "OPEN", 3, limit_price=14200, advanced="FOK")

市价单
api.insert_order("DCE.m2009", "BUY", "OPEN", 3)

(continues on next page)

85

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

FOK 市价单
api.insert_order("DCE.m2009", "BUY", "OPEN", 3, advanced="FOK")

BEST
api.insert_order("CFFEX.T2003", "BUY", "OPEN", 3, limit_price="BEST")
FIVELEVEL
api.insert_order("CFFEX.T2003", "BUY", "OPEN", 3, limit_price="FIVELEVEL")

不同交易所支持的高级指令参数组合：

交易所 品种 limit_price advance
郑商所 期货 指定价格 / None None / FAK
郑商所 期权 指定价格 / None None / FAK / FOK
大商所 期货 指定价格 / None None / FAK / FOK
大商所 期权 指定价格 None / FAK / FOK
上期所 期货/期权 指定价格 None / FAK / FOK
中金所 期货/期权 指定价格 None / FAK / FOK
中金所 期货/期权 BEST / FIVELEVEL None / FAK
上交所 ETF期权 指定价格 None / FOK
深交所 ETF期权 指定价格 None / FOK

6.2 批批批量量量回回回测测测,参参参数数数搜搜搜索索索及及及其其其它它它

在阅读本文档前,请确保您已经熟悉了策略程序回测

6.2.1 参参参数数数优优优化化化/参参参数数数搜搜搜索索索

TqSdk并不提供专门的参数优化机制. 您可以按照自己的需求,针对可能的每个参数值安排一个回测,观察它
们的回测结果,以简单的双均线策略为例:

from tqsdk import TqApi, TqAuth, TqSim, TargetPosTask, BacktestFinished, TqBacktest
from tqsdk.tafunc import ma
from datetime import date

LONG = 60
SYMBOL = "SHFE.cu1907"

for SHORT in range(20, 40): # 短周期参数从20-40分别做回测
acc = TqSim() # 每次回测都创建一个新的模拟账户
try:
api = TqApi(acc, backtest=TqBacktest(start_dt=date(2019, 5, 6), end_dt=date(2019,

→˓5, 10)), auth=TqAuth("信易账户", "账户密码"))
account = api.get_account()
klines = api.get_kline_serial(SYMBOL, duration_seconds=60, data_length=LONG + 2)
target_pos = TargetPosTask(api, SYMBOL)
while True:

api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"):

short_avg = ma(klines.close, SHORT)
long_avg = ma(klines.close, LONG)
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] > short_avg.

→˓iloc[-1]: (continues on next page)

86 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

target_pos.set_target_volume(-1)
if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] > long_avg.

→˓iloc[-1]:
target_pos.set_target_volume(1)

except BacktestFinished:
api.close()
print("SHORT=", SHORT, "最终权益=", account["balance"]) # 每次回测结束时, 输出使用的参

数和最终权益

6.2.2 多多多进进进程程程并并并发发发执执执行行行多多多个个个回回回测测测任任任务务务

如果您有大量回测任务想要尽快完成,您首先需要一台给力的电脑(可以考虑到XX云上租一台32核的,一小时
几块钱). 然后您就可以并发执行N个回测了.还是以上面的策略为例:

from tqsdk import TqApi, TqAuth, TqSim, TargetPosTask, BacktestFinished, TqBacktest
from tqsdk.tafunc import ma
from datetime import date
import multiprocessing
from multiprocessing import Pool

def MyStrategy(SHORT):
LONG = 60
SYMBOL = "SHFE.cu1907"
acc = TqSim()
try:
api = TqApi(acc, backtest=TqBacktest(start_dt=date(2019, 5, 6), end_dt=date(2019,

→˓5, 10)), auth=TqAuth("信易账户", "账户密码"))
data_length = LONG + 2
klines = api.get_kline_serial(SYMBOL, duration_seconds=60, data_length=data_

→˓length)
target_pos = TargetPosTask(api, SYMBOL)
while True:

api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"):

short_avg = ma(klines.close, SHORT)
long_avg = ma(klines.close, LONG)
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] > short_avg.

→˓iloc[-1]:
target_pos.set_target_volume(-3)

if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] > long_avg.
→˓iloc[-1]:

target_pos.set_target_volume(3)
except BacktestFinished:
api.close()
print("SHORT=", SHORT, "最终权益=", acc.account.balance) # 每次回测结束时, 输出使用的参

数和最终权益

if __name__ == '__main__':
multiprocessing.freeze_support()
p = Pool(4) # 进程池, 建议小于cpu数
for s in range(20, 40):
p.apply_async(MyStrategy, args=(s,)) # 把20个回测任务交给进程池执行

print('Waiting for all subprocesses done...')
p.close()

(continues on next page)

6.2. 批批批量量量回回回测测测,参参参数数数搜搜搜索索索及及及其其其它它它 87

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

p.join()
print('All subprocesses done.')

注注注意意意: 由由由于于于服服服务务务器器器流流流控控控限限限制制制,同同同时时时执执执行行行的的的回回回测测测任任任务务务请请请勿勿勿超超超过过过10个个个

6.3 交交交易易易策策策略略略的的的多多多实实实例例例运运运行行行

我们可能会将一个策略应用于不同的目标品种,不同品种使用的策略参数也不同.

以简单的双均线策略为例.一个简单的双均线策略代码大致是这样:

SYMBOL = "SHFE.bu1912" # 合约代码
SHORT = 30 # 短周期
LONG = 60 # 长周期

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

klines = api.get_kline_serial(SYMBOL, duration_seconds=60, data_length=LONG + 2)
target_pos = TargetPosTask(api, SYMBOL)

while True:
api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"):

short_avg = ma(klines["close"], SHORT)
long_avg = ma(klines["close"], LONG)
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] > short_avg.

→˓iloc[-1]:
target_pos.set_target_volume(-3)
print("均线下穿，做空")

if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] > long_avg.
→˓iloc[-1]:

target_pos.set_target_volume(3)
print("均线上穿，做多")

我们可能需要将这个策略运行多份,每份的 SYMBOL, LONG, SHORT都不同.

TqSdk为这类需求提供两种解决方案,您可任意选择一种.

6.3.1 每每每个个个进进进程程程执执执行行行一一一个个个策策策略略略实实实例例例

最简单的办法是直接将上面的程序复制为N个文件,手工修改每个文件中的 SYMBOL, SHORT, LONG的值,
再把N个程序分别启动运行即可达到目的.

如果觉得代码复制N份会导致修改不方便,可以简单的剥离一个函数文件,每个策略实例文件引用它:

在函数文件 mylib.py 中:

def ma(SYMBOL, SHORT, LONG):
api = TqApi(TqSim())

klines = api.get_kline_serial(SYMBOL, duration_seconds=60, data_length=LONG + 2)
target_pos = TargetPosTask(api, SYMBOL)

while True:
(continues on next page)

88 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"):

short_avg = ma(klines["close"], SHORT)
long_avg = ma(klines["close"], LONG)
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] > short_

→˓avg.iloc[-1]:
target_pos.set_target_volume(-3)
print("均线下穿，做空")

if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] > long_
→˓avg.iloc[-1]:

target_pos.set_target_volume(3)
print("均线上穿，做多")

--
在策略文件 ma-股指.py 中:

from mylib import ma
ma("CFFEX.IF1906", 30, 60)

--
在策略文件 ma-玉米.py 中:

from mylib import ma
ma("DCE.c1906", 10, 20)

习惯使用命令行的同学也可以做命令行参数:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--SYMBOL')
parser.add_argument('--SHORT')
parser.add_argument('--LONG')
args = parser.parse_args()

api = TqApi(TqSim())
klines = api.get_kline_serial(args.SYMBOL, duration_seconds=60, data_length=args.LONG
→˓+ 2)
target_pos = TargetPosTask(api, args.SYMBOL)
while True:

api.wait_update()
if api.is_changing(klines.iloc[-1], "datetime"):

short_avg = ma(klines["close"], args.SHORT)
long_avg = ma(klines["close"], args.LONG)
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] > short_avg.

→˓iloc[-1]:
target_pos.set_target_volume(-3)
print("均线下穿，做空")

if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] > long_avg.
→˓iloc[-1]:

target_pos.set_target_volume(3)
print("均线上穿，做多")

使用时在命令行挂参数:

python ma.py --SYMBOL=SHFE.cu1901 --LONG=30 --SHORT=20
python ma.py --SYMBOL=SHFE.rb1901 --LONG=50 --SHORT=10

6.3. 交交交易易易策策策略略略的的的多多多实实实例例例运运运行行行 89

TianQin Python SDK Documentation, Release 3.4.1

优点:

• 思路简单,好学好做,不易出错

• 每个单独策略可以分别启动/停止

• 策略代码最简单,调试方便

缺点:

• 每个策略进程要建立一个单独的服务器连接,数量过大时可能无法连接成功

6.3.2 单单单线线线程程程创创创建建建多多多个个个异异异步步步任任任务务务

TqSdk内核支持以异步方式实现多任务。如果用户策略代码实现为一个异步任务,即可在单线程内执行多个
策略。

TqSdk（2.6.1 版本）对几个常用接口 get_quote(), get_quote_list(), get_kline_serial(),
get_tick_serial()支持协程中调用。

对于 get_quote()接口，在异步代码中可以写为 await api.get_quote('SHFE.cu2110')，代码更
加紧凑，可读性更好。

示例代码如下:

协程示例，为每个合约创建 task
from tqsdk import TqApi

async def demo(SYMBOL):
quote = await api.get_quote(SYMBOL) # 支持 await 异步，这里会订阅合约，等到收到合约行情才

返回
print(f"quote: {SYMBOL}", quote.datetime, quote.last_price) # 这一行就会打印出合约的

最新行情

##
以上代码和下面的代码是等价的，强烈建议在异步中用上面的写法
quote = api.get_quote(SYMBOL) # 这里还是同步写法，仅仅返回 quote 的引用，还没有订阅合

约，会在下次调用 api.wait_update() 时才发出订阅合约请求
print(f"quote: {SYMBOL}", quote.datetime, quote.last_price) # 这一行不会打印出合约

的信息
#
async with api.register_update_notify() as update_chan:
async for _ in update_chan:
if quote.datetime != "": # 当收到 datetime 字段时，可以判断收到了合约行情
print(SYMBOL, quote.datetime, quote.last_price) # 此时会打印出行情
break
##

async with api.register_update_notify() as update_chan:
async for _ in update_chan:

if api.is_changing(quote):
print(SYMBOL, quote.datetime, quote.last_price)

... 策略代码 ...

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
为每个合约创建异步任务
api.create_task(demo("SHFE.rb2107"))
api.create_task(demo("DCE.m2109"))

(continues on next page)

90 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

while True:
api.wait_update()

下面是一个更完整的示例，用异步方式实现为每个合约创建双均线策略，示例代码如下:

协程示例，为每个合约创建 task
from tqsdk import TqApi

api = TqApi(auth=TqAuth("信易账户", "账户密码")) # 构造 api 实例

async def demo(SYMBOL, SHORT, LONG):
"""
双均线策略 -- SYMBOL: 合约, SHORT: 短周期, LONG: 长周期
"""
data_length = LONG + 2 # k线数据长度
get_kline_serial 支持 await 异步写法，这里会订阅 K 线，等到收到 k 线数据才返回
klines = await api.get_kline_serial(SYMBOL, duration_seconds=60, data_length=data_

→˓length)
target_pos = TargetPosTask(api, SYMBOL)
async with api.register_update_notify() as update_chan:

async for _ in update_chan:
if api.is_changing(klines.iloc[-1], "datetime"):

short_avg = ma(klines["close"], SHORT) # 短周期
long_avg = ma(klines["close"], LONG) # 长周期
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] >

→˓short_avg.iloc[-1]:
target_pos.set_target_volume(-3)
print("均线下穿，做空")

if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] >
→˓long_avg.iloc[-1]:

target_pos.set_target_volume(3)
print("均线上穿，做多")

为每个合约创建异步任务
api.create_task(demo("SHFE.rb2107", 30, 60))
api.create_task(demo("DCE.m2109", 30, 60))
api.create_task(demo("DCE.jd2109", 30, 60))

while True:
api.wait_update()

优点:

• 单线程内执行多个策略,只消耗一份网络连接

• 没有线程或进程切换成本,性能高,延时低,内存消耗小,性能最优

缺点:

• 用户需熟练掌握 asyncio异步编程,学习成本高

example 中的 gridtrading_async.py 就是一个完全按异步框架实现的网格交易策略. 有意学习的同学可以与
gridtrading.py对比一下

6.3. 交交交易易易策策策略略略的的的多多多实实实例例例运运运行行行 91

https://github.com/shinnytech/tqsdk-python/blob/master/tqsdk/demo/example/gridtrading_async.py

TianQin Python SDK Documentation, Release 3.4.1

6.4 与与与Gui库库库共共共同同同工工工作作作

某些情况下, 我们可能需要在一个 Python GUI 程序中使用TqSdk库. TqSdk 可以与Tkinter, PyQt, WxPython,
PySimpleGui等大多数常见 Python Gui库配合工作.

下面以 PySimpleGui为例,介绍 Gui库与 TqSdk组合使用的方式.

6.4.1 先先先后后后使使使用用用GUI库库库和和和TqSdk

参见示例程序 param_input.py. 这个程序先使用 PySimpleGui创建一个参数输入对话框,用户输入参数后,关闭
对话框,开始使用 TqSdk:

6.4.2 在在在两两两个个个线线线程程程中中中分分分别别别运运运行行行Gui和和和TqSdk

参见示例程序 multi_thread.py.

6.4.3 在在在TqSdk任任任务务务中中中驱驱驱动动动Gui消消消息息息循循循环环环

参见示例程序 loop_integrate.py.

6.5 将将将程程程序序序信信信息息息推推推送送送到到到手手手机机机端端端

TqSdk并不提供专门的服务器来推送消息，但是你可以通过其他 SDK来做到这个效果，在发生成交或者条
件满足时，进行消息推送，以钉钉为例:

from datetime import datetime, time, timedelta
import requests
from json import dumps
from tqsdk import TqApi, TqAuth, TargetPosTask

def send_msg(content):
"""钉钉消息提醒模块"""
webhook = "设置自己的钉钉 webhook"

钉钉安全规则将 天勤量化 设为关键字
msg = {"msgtype": "text",

"text": {"content": "{}\n{}\n".format("天勤量化\n" + content,
datetime.now().strftime("%Y-%m-%d %H:

→˓%M:%S"))}, }
headers = {"content-type": "application/json;charset=utf-8"}
body = dumps(msg)
requests.post(webhook, data=body, headers=headers)
print(content)

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.rb2109")
target_pos = TargetPosTask(api, "SHFE.rb2110")
send_msg("策略开始运行")

(continues on next page)

92 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

a = 0
while True:

api.wait_update()
通过本地变量 a 来避免多次发送钉钉消息触发流控
if quote.last_price > 5110 and a == 0:

send_msg("行情满足条件，开多头5手")
target_pos.set_target_volume(5)
a = 1

具体说明，请参考钉钉操作手册

6.6 TqSdk与与与 vn.py有有有哪哪哪些些些差差差别别别

TqSdk与 vn.py有非常多的差别. 如果您是一位有经验的 vn.py用户,刚开始接触 TqSdk,下面的信息将帮助您
尽快理解 TqSdk.

6.6.1 系系系统统统整整整体体体架架架构构构

vn.py是一套 all-in-one的结构,在一个Python软件包中包含了数据库,行情接收/存储,交易接口,图形界面等功
能.

TqSdk则使用基于网络协作的组件设计. 如下图:

如图所示,整个系统结构包括这些关键组件:

• 行情网关 (Open Md Gateway)负责提供实时行情和历史数据

• 交易中继网关 (Open Trade Gateway)负责连接到期货公司交易系统

• 上面两个网关统一以 Diff协议对下方提供服务

• 天勤终端和TqSdk按照Diff协议连接到行情网关和交易中继网关,实现行情和交易功能

这样的结构可以给用户带来一些好处:

• TqSdk很小,安装也很方便,只要简单 pip install tqsdk即可

• 官方专门运维行情数据库,用户可以直接使用,不需要自己接收和存储数据

• 交易相关接口被大幅度简化,不再需要处理CTP接口的复杂回调,也不需要发起任何查询请求

也有一些不如vn.py方便的地方:

• 由于交易指令经交易网关转发,用户无法直接指定CTP服务器地址. 用户如果需要连接到官方交易网关
不支持的期货公司,需要自行部署交易网关.

6.6.2 每每每个个个策策策略略略是是是一一一个个个单单单独独独运运运行行行的的的py文文文件件件

在 vn.py中,要实现一个策略程序,通常是从 CtaTemplate等基类派生一个子类,像这样:

class DoubleMaStrategy(CtaTemplate):

parameters = ["fast_window", "slow_window"]
variables = ["fast_ma0", "fast_ma1", "slow_ma0", "slow_ma1"]

(continues on next page)

6.6. TqSdk与与与 vn.py有有有哪哪哪些些些差差差别别别 93

https://developers.dingtalk.com/document/app/custom-robot-access

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

def __init__(self, cta_engine, strategy_name, vt_symbol, setting):
...

def on_tick(self, tick: TickData):
...

def on_bar(self, bar: BarData):
...

这个 DoubleMaStrategy类写好以后,由vn.py的策略管理器负责加载运行.整个程序结构中, vn.py作为调用方,
用户代码作为被调用方,结构图是这样的:

而在 TqSdk中,策略程序并没有一个统一的基类. TqSdk只是提供一些行情和交易函数,用户可以任意组合它
们来实现自己的策略程序,还是以双均线策略为例:

'''
双均线策略
'''
from tqsdk import TqApi, TqAuth, TqSim, TargetPosTask
from tqsdk.tafunc import ma

SHORT = 30
LONG = 60
SYMBOL = "SHFE.bu1912"

api = TqApi(auth=TqAuth("信易账户", "账户密码"))

data_length = LONG + 2
klines = api.get_kline_serial(SYMBOL, duration_seconds=60, data_length=data_length)
target_pos = TargetPosTask(api, SYMBOL)

while True:
api.wait_update()

if api.is_changing(klines.iloc[-1], "datetime"): # 产生新k线:重新计算SMA
short_avg = ma(klines.close, SHORT) # 短周期
long_avg = ma(klines.close, LONG) # 长周期

均线下穿，做空
if long_avg.iloc[-2] < short_avg.iloc[-2] and long_avg.iloc[-1] > short_avg.

→˓iloc[-1]:
target_pos.set_target_volume(-3)
print("均线下穿，做空")

均线上穿，做多
if short_avg.iloc[-2] < long_avg.iloc[-2] and short_avg.iloc[-1] > long_avg.

→˓iloc[-1]:
target_pos.set_target_volume(3)
print("均线上穿，做多")

以上代码文件单独运行,即可执行一个双均线交易策略. 整个程序结构中,用户代码作为调用方, TqSdk库代码
作为被调用方,每个策略是完全独立的.结构是这样:

TqSdk将每个策略作为一个独立进程运行,这样就可以:

• 在运行多策略时可以充分利用多CPU的计算能力

• 每个策略都可以随时启动/停止/调试/修改代码,而不影响其它策略程序的运行

94 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

• 可以方便的针对单个策略程序进行调试

在策略程序中,用户代码可以随意调用 TqSdk包中的任意函数,这带来了更大的自由度,比如:

• 在一个策略程序中使用多个合约或周期的K线数据,盘口数据和Tick数据. 对于某些类型的策略来说这
是很方便的

• 对多个合约的交易指令进行精细管理

• 管理复杂的子任务

• 方便策略程序跟其它库或框架集成

以一个套利策略的代码为例:

'''
价差回归
当近月-远月的价差大于200时做空近月，做多远月
当价差小于150时平仓
'''
api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote_near = api.get_quote("SHFE.rb1910")
quote_deferred = api.get_quote("SHFE.rb2001")
创建 rb1910 的目标持仓 task，该 task 负责调整 rb1910 的仓位到指定的目标仓位
target_pos_near = TargetPosTask(api, "SHFE.rb1910")
创建 rb2001 的目标持仓 task，该 task 负责调整 rb2001 的仓位到指定的目标仓位
target_pos_deferred = TargetPosTask(api, "SHFE.rb2001")

while True:
api.wait_update()
if api.is_changing(quote_near) or api.is_changing(quote_deferred):

spread = quote_near.last_price - quote_deferred.last_price
print("当前价差:", spread)
if spread > 250:

print("目标持仓: 空近月，多远月")
设置目标持仓为正数表示多头，负数表示空头，0表示空仓
target_pos_near.set_target_volume(-1)
target_pos_deferred.set_target_volume(1)

elif spread < 200:
print("目标持仓: 空仓")
target_pos_near.set_target_volume(0)
target_pos_deferred.set_target_volume(0)

在这个程序中,我们同时跟踪两个合约的行情信息,并为两个合约各创建一个调仓任务,可以方便的实现套利
策略

6.6.3 K线线线数数数据据据与与与指指指标标标计计计算算算

使用vn.py时, K线是由vn.py接收实时行情,并在用户电脑上生成K线,存储于用户电脑上的数据库中.

而在TqSdk中, K线数据和其它行情数据一样是由行情网关生成并推送的.这带来了一些差别:

• 用户不再需要维护K线数据库.用户电脑实时行情中断后,也不再需要补历史数据

• 行情服务器生成K线时,采用了按K线时间严格补全对齐的算法.这与vn.py或其它软件有明显区别,详见
https://www.shinnytech.com/blog/why-our-kline-different/

• 行情数据只在每次程序运行时通过网络获取,不在用户硬盘保存.如果策略研究工作需要大量静态历史
数据,我们推荐使用数据下载工具,另行下载csv文件使用.

6.6. TqSdk与与与 vn.py有有有哪哪哪些些些差差差别别别 95

https://www.shinnytech.com/blog/why-our-kline-different/

TianQin Python SDK Documentation, Release 3.4.1

TqSdk中的K线序列采用 pandas.DataFrame格式. pandas提供了非常丰富的数据处理函数 ,使我们可以非常方
便的进行数据处理,例如:

ks = api.get_kline_serial("SHFE.cu1901", 60)
print(ks.iloc[-1]) # <- 最后一根K线
print(ks.close) # <- 收盘价序列
ks.high - ks.high.shift(1) # <- 每根K线最高价-前一根K线最高价, 形成一个新序列

TqSdk也通过 tqsdk.tafunc提供了一批行情分析中常用的计算函数,例如:

from tqsdk import tafunc
ks = api.get_kline_serial("SHFE.cu1901", 60)
ms = tafunc.max(ks.open, ks.close) # <- 取每根K线开盘价和收盘价的高者构建一个新序列
median3 = tafunc.median(ks.close, 100) # <- 求最近100根K线收盘价的中间值
ss = tafunc.std(ks.close, 5) # <- 每5根K线的收盘价标准差

6.6.4 数数数据据据接接接收收收和和和更更更新新新

vn.py按照事件回调模型设计,使用 CtaTemplate的 on_xxx回调函数进行行情数据和回单处理:

class DoubleMaStrategy(CtaTemplate):
def on_tick(self, tick: TickData):
...

def on_bar(self, bar: BarData):
...

def on_order(self, order: OrderData):
pass

def on_trade(self, trade: TradeData):
self.put_event()

TqSdk则不使用事件回调机制. wait_update()函数设计用来获取任意数据更新,像这样:

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
ks = api.get_kline_serial("SHFE.cu1901", 60)

while True:
api.wait_update() # <- 这个 wait_update 将尝试更新所有数据. 如果没有任何新信息, 程序会

阻塞在这一句. 一旦有任意数据被更新, 程序会继续往下执行
print(ks.close.iloc[-1]) # <- 最后一根K线的收盘价

一次 wait_update可能更新多个实体,在这种情况下, is_changing()被用来判断某个实体是否有变更:

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
q = api.get_quote("SHFE.cu1901")
ks = api.get_kline_serial("SHFE.cu1901", 60)
x = api.insert_order("SHFE.cu1901", direction="BUY", offset="OPEN", volume=1, limit_
→˓price=50000)

while True:
api.wait_update() # <- 这个 wait_update 将尝试更新所有数据. 如果没有任何新信息, 程序会

阻塞在这一句. 一旦有任意数据被更新, 程序会继续往下执行
if api.is_changing(q): # <- 这个 is_changing 用来判定这次更新是否影响到了q

print(q)
if api.is_changing(x, "status"): # <- 这个 is_changing 用来判定这次更新是否影响到了报单

的status字段
print(x)

96 Chapter 6. 进进进阶阶阶主主主题题题

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

TianQin Python SDK Documentation, Release 3.4.1

TqSdk针对行情数据和交易信息都采用相同的 wait_update/is_changing方案.用户需要记住的要点包括:

• get_quote, get_kline_serial, insert_order等业务函数返回的是一个引用(refrence, not value),它们的值总是
在 wait_update时更新.

• 用户程序除执行自己业务逻辑外,需要反复调用 wait_update. 在两次 wait_update间,所有数据都不更新

• 用 insert_order函数下单,报单指令实际是在 insert_order后调用 wait_update时发出的.

• 用户程序中需要避免阻塞,不要使用 sleep暂停程序

关于 wait_update机制的详细说明,请见策略程序结构

6.6.5 图图图形形形界界界面面面

TqSdk提供策略程序图形化界面来供有图形化需求的用户使用:

• 策略运行时,交易记录和持仓记录自动在行情图上标记,可以快速定位跳转,可以跨周期缩放定位

• 策略回测时,提供回测报告/图上标记和对应的回测分析报告.

• 策略运行和回测信息自动保存,可事后随时查阅显示

TqSdk配合web_gui使用时,还支持自定义绘制行情图表,像这样:

api = TqApi(auth=TqAuth("信易账户","账户密码"), web_gui=True)
获取 cu1905 和 cu1906 的日线数据
klines = api.get_kline_serial("SHFE.cu1905", 86400)
klines2 = api.get_kline_serial("SHFE.cu1906", 86400)

算出 cu1906 - cu1905 的价差，并以折线型态显示在副图
klines["dif"] = klines2["close"] - klines["close"]
klines["dif.board"] = "DIF"
klines["dif.color"] = 0xFF00FF00
klines["dif.width"] = 3

6.6.6 回回回测测测

使用TqSdk开发的策略可以回测:

• 提供Tick及K线级别的回测.

• TqSdk允许在一个策略中使用任意多个数据序列. 回测框架将正确识别并处理这种情况.

• 回测前不需要准备数据

关于策略回测的详细说明,请见策略程序回测

6.6.7 其其其它它它区区区别别别

此外,还有一些差别值得注意

• TqSdk要求 Python 3.6.4以上版本,不支持 Python 2.x

• TqSdk使用了Python3的async框架,某些 IDE不支持,需要使用支持 async的IDE,例如 pycharm

要学习使用 TqSdk,推荐从十分钟快速入门开始

6.6. TqSdk与与与 vn.py有有有哪哪哪些些些差差差别别别 97

TianQin Python SDK Documentation, Release 3.4.1

6.7 TqSdk与与与使使使用用用Ctp接接接口口口开开开发发发策策策略略略程程程序序序有有有哪哪哪些些些差差差别别别

如果您曾经直接使用CTP接口开发过交易策略程序,目前刚开始接触 TqSdk, 下面的信息将帮助您尽快理解
TqSdk.

6.7.1 系系系统统统整整整体体体架架架构构构

CTP接口直接连接到期货公司交易系统,从期货公司系统获取行情并执行交易指令.

TqSdk则使用基于网络协作的组件设计. 如下图:

如图所示,整个系统结构包括这些关键组件:

• 行情网关 (Open Md Gateway)负责提供实时行情和历史数据

• 交易中继网关 (Open Trade Gateway)负责连接到期货公司交易系统

• 上面两个网关统一以 Diff协议对下方提供服务

• 天勤终端和TqSdk按照Diff协议连接到行情网关和交易中继网关,实现行情和交易功能

这样的结构可以给用户带来一些好处:

• TqSdk很小,安装也很方便,只要简单 pip install tqsdk即可

• 官方专门运维行情数据库,用户可以直接使用,不需要自己接收和存储数据

• 交易相关接口被大幅度简化,不再需要处理CTP接口的复杂回调,也不需要发起任何查询请求

• 任何语言只要支持websocket协议,都可以用来进行策略开发

也有一些不如直接使用CTP接口方便的地方:

• 由于交易指令经交易网关转发,用户无法直接指定CTP服务器地址. 用户如果需要连接到官方交易网关
不支持的期货公司,需要自行部署交易网关.

6.7.2 K线线线数数数据据据与与与指指指标标标计计计算算算

Ctp接口不提供K线数据.

在TqSdk中, K线数据和其它行情数据一样是由行情网关生成并推送的:

• 用户不再需要维护K线数据库.用户电脑实时行情中断后,也不再需要补历史数据

• 行情服务器生成K线时, 采用了按K线时间严格补全对齐的算法. 这与其它软件有明显区别, 详见
https://www.shinnytech.com/blog/why-our-kline-different/

• 行情数据只在每次程序运行时通过网络获取,不在用户硬盘保存.如果策略研究工作需要大量静态历史
数据,我们推荐使用数据下载工具,另行下载csv文件使用.

TqSdk中的K线序列采用 pandas.DataFrame格式. pandas提供了非常丰富的数据处理函数 ,使我们可以非常方
便的进行数据处理,例如:

ks = api.get_kline_serial("SHFE.cu1901", 60)
print(ks.iloc[-1]) # <- 最后一根K线
print(ks.close) # <- 收盘价序列
ks.high - ks.high.shift(1) # <- 每根K线最高价-前一根K线最高价, 形成一个新序列

TqSdk也通过 tqsdk.tafunc提供了一批行情分析中常用的计算函数,例如:

98 Chapter 6. 进进进阶阶阶主主主题题题

https://www.shinnytech.com/blog/why-our-kline-different/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

TianQin Python SDK Documentation, Release 3.4.1

from tqsdk import tafunc
ks = api.get_kline_serial("SHFE.cu1901", 60)
ms = tafunc.max(ks.open, ks.close) # <- 取每根K线开盘价和收盘价的高者构建一个新序列
median3 = tafunc.median(ks.close, 100) # <- 求最近100根K线收盘价的中间值
ss = tafunc.std(ks.close, 5) # <- 每5根K线的收盘价标准差

6.7.3 数数数据据据接接接收收收和和和更更更新新新

Ctp接口按照事件回调模型设计,使用 CThostFtdcTraderSpi的 OnXXX回调函数进行行情数据和回单处理:

class MySpiHandler
: public CThostFtdcTraderSpi

{
public:

///当客户端与交易后台建立起通信连接时（还未登录前），该方法被调用。
virtual void OnFrontConnected();

///报单通知
virtual void OnRtnOrder(CThostFtdcOrderField *pOrder);

///成交通知
virtual void OnRtnTrade(CThostFtdcTradeField *pTrade);

}

TqSdk则不使用事件回调机制. wait_update()函数设计用来获取任意数据更新,像这样:

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
x = api.insert_order("SHFE.cu1901", direction="BUY", offset="OPEN", volume=1, limit_
→˓price=50000)

while True:
api.wait_update() # <- 这个 wait_update 将尝试更新所有数据. 如果没有任何新信息, 程序会

阻塞在这一句. 一旦有任意数据被更新, 程序会继续往下执行
print(x) # <- 显示委托单最新状态

一次 wait_update可能更新多个实体,在这种情况下, is_changing()被用来判断某个实体是否有变更:

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
q = api.get_quote("SHFE.cu1901")
ks = api.get_kline_serial("SHFE.cu1901", 60)
x = api.insert_order("SHFE.cu1901", direction="BUY", offset="OPEN", volume=1, limit_
→˓price=50000)

while True:
api.wait_update() # <- 这个 wait_update 将尝试更新所有数据. 如果没有任何新信息, 程序会

阻塞在这一句. 一旦有任意数据被更新, 程序会继续往下执行
if api.is_changing(q): # <- 这个 is_changing 用来判定这次更新是否影响到了q

print(q)
if api.is_changing(x, "status"): # <- 这个 is_changing 用来判定这次更新是否影响到了报单

的status字段
print(x)

TqSdk针对行情数据和交易信息都采用相同的 wait_update/is_changing方案.用户需要记住的要点包括:

• get_quote, get_kline_serial, insert_order等业务函数返回的是一个引用(refrence, not value),它们的值总是
在 wait_update时更新.

6.7. TqSdk与与与使使使用用用Ctp接接接口口口开开开发发发策策策略略略程程程序序序有有有哪哪哪些些些差差差别别别 99

TianQin Python SDK Documentation, Release 3.4.1

• 用户程序除执行自己业务逻辑外,需要反复调用 wait_update. 在两次 wait_update间,所有数据都不更新

• 用 insert_order函数下单,报单指令实际是在 insert_order后调用 wait_update时发出的.

• 用户程序中需要避免阻塞,不要使用 sleep暂停程序

关于 wait_update机制的详细说明,请见策略程序结构

6.8 在在在无无无人人人监监监控控控环环环境境境下下下执执执行行行策策策略略略

对于已经过充分测试,十分成熟的策略程序,也可以选择以无人值守方式运行.

6.8.1 准准准备备备环环环境境境

TqSdk可以在windows/linux或macosx环境下运行.无论您选择使用windows或linux系统,请确保

• 已经装有 Python 3.6+

• 安装 TqSdk

创建一个目录,放置你所有的策略文件.

6.8.2 在在在每每每个个个策策策略略略程程程序序序中中中设设设置置置实实实盘盘盘账账账号号号

将每个策略程序配置为独立直连实盘账号. 在创建 TqApi时,传入TqAccount实例.注意期货公司名称需要与
天勤中的名称一致:

api = TqApi(TqAccount("H海通期货", "022631", "123456"), auth=TqAuth("信易账户", "账户密码
→˓"))

6.8.3 检检检查查查策策策略略略程程程序序序

将策略代码投入无人监控运行前,除对策略代码进行全面测试外,还应注意以下事项:

• 使用 python的 logging模块输出日志信息到文件,不要使用 print打印日志信息

• 策略代码退出时记得调用 api.close()函数,或者用 with closing(api)的格式确保退出时自动关闭

• 目前api在运行过程中抛出的异常, 默认处理都是整个策略进程直接退出. 如无特殊需求, 不要使用
expect: 的方式捕获异常并阻止程序退出,这种情况如果没有正确处理,可能产生难以预测的后果.

6.8.4 在在在 windows环环环境境境下下下配配配置置置策策策略略略的的的定定定时时时启启启动动动/停停停止止止

在 windows下,通常使用计划任务来管理策略的定时启动/停止,下面的说明以Windows 10为例,其它 windows
版本操作可能有少许差异.

打开 windows任务计划管理器

100 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

点点点击创建基本任务

6.8. 在在在无无无人人人监监监控控控环环环境境境下下下执执执行行行策策策略略略 101

TianQin Python SDK Documentation, Release 3.4.1

为为为每个策略添加一个策略启动任务, [程序或脚本]处填 python.exe, [添加参数]处填策略代码py文件名和参数,
[起始于]处填策略代码目录

102 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

最最最后添加一个任务,用来停止所有策略进程. [程序或脚本]处填 taskkill, [添加参数]处填 /IM python.exe

6.8. 在在在无无无人人人监监监控控控环环环境境境下下下执执执行行行策策策略略略 103

TianQin Python SDK Documentation, Release 3.4.1

6.8.5 在在在 linux环环环境境境下下下配配配置置置策策策略略略的的的定定定时时时启启启动动动/停停停止止止

在 linux下,通常使用 cron服务来处理策略的定时启动/停止. 具体配置请参考您所使用linux发行版的相应文
档.

将将将一一一个个个策策策略略略应应应用用用于于于多多多个个个合合合约约约或或或多多多个个个账账账户户户

将一个策略应用于多个合约或多个账户是一个常见需求.我们推荐使用命令行参数来传递合约或账户信息.
请看下面例子:

-*- coding: utf-8 -*-

from tqsdk import TqApi, TqAccount

api = TqApi(TqAccount("H海通期货", "0330203", "123456"), auth=TqAuth("信易账户", "账户密码
→˓"))
开仓两手并等待完成
order = api.insert_order(symbol="SHFE.rb1901", direction="BUY", offset="OPEN", limit_
→˓price=4310,volume=2)
while order.status != "FINISHED":

(continues on next page)

104 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

api.wait_update()
print("已开仓")

上面的代码中固定了账户及合约代码 SHFE.rb1901. 我们可以利用 python的 argparse模块为这个程序添加一
些参数:

-*- coding: utf-8 -*-

import argparse
from tqsdk import TqApi, TqSim, TqAccount

#解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument('--broker')
parser.add_argument('--user_name')
parser.add_argument('--password')
parser.add_argument('--symbol')
args = parser.parse_args()
print("策略参数为: ", args.user_name, args.symbol)

api = TqApi(TqAccount(args.broker, args.user_name, args.password), auth=TqAuth("信易账户
→˓", "账户密码"))
开仓两手并等待完成
order = api.insert_order(symbol=args.symbol, direction="BUY", offset="OPEN", limit_
→˓price=4310,volume=2)
while order.status != "FINISHED":

api.wait_update()
print("已开仓")

要通过命令行运行此策略,可以输入:

python args.py --broker=H海通期货 --user_name=0330203 --password=123456 --symbol=SHFE.
→˓cu1901

要在 PyCharm中同时执行此程序的多种参数版本,可以通过 PyCharm的 Run Configuration实现.

先在 Edit Configuration中,为每组参数创建一个运行项

6.8. 在在在无无无人人人监监监控控控环环环境境境下下下执执执行行行策策策略略略 105

TianQin Python SDK Documentation, Release 3.4.1

106 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

在 Edit Configuration中配置好以后,通过 Run... 菜单选择保存好的运行项,即可实现带参数运行

6.9 TargetPosTask高高高级级级功功功能能能

本篇文档假设您已经了解 TargetPosTask的用法，文档参考交易辅助工具。

本篇文档主要介绍 TargetPosTask的高级用法。如何使用cancel()和 is_finished()方法。

6.9. TargetPosTask高高高级级级功功功能能能 107

TianQin Python SDK Documentation, Release 3.4.1

6.9.1 应应应用用用情情情景景景说说说明明明

任何时刻，每个账户下一个合约只能有一个 TargetPosTask实例，并且其构造参数不能修改。

但是在某些情况下，用户会希望可以管理 TargetPosTask实例。

比如说，用户使用 TargetPosTask 的 PASSIVE 模式进行下单，希望在收盘前取消所有挂单（包含
TargetPosTask实例的未成委托单），并平仓。

6.9.2 如如如何何何实实实现现现这这这样样样的的的功功功能能能

TargetPosTask类提供了 cancel()和 is_finished()方法。

• cancel()方法会取消当前 TargetPosTask实例，会将该实例已经发出但还未成交的委托单撤单此
实例的 set_target_volume函数不会再生效，并且此实例的 set_target_volume函数不会再生效。

• is_finished() 方法可以获取当前 TargetPosTask 实例是否已经结束。已经结束实例的
set_target_volume函数不会再接受参数，此实例不会再下单或者撤单。

下面是一个例子:

from datetime import datetime, time
from tqsdk import TqApi, TargetPosTask

api = TqApi(auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.rb2110")
target_pos_passive = TargetPosTask(api, "SHFE.rb2110", price="PASSIVE")

while datetime.strptime(quote.datetime, "%Y-%m-%d %H:%M:%S.%f").time() < time(14, 50):
api.wait_update()
... 策略代码 ...

取消 TargetPosTask 实例
target_pos_passive.cancel()

while not target_pos_passive.is_finished(): # 此循环等待 target_pos_passive 处理 cancel
→˓结束

api.wait_update() # 调用wait_update()，会对已经发出但还是未成交的委托单撤单

创建新的 TargetPosTask 实例
target_pos_active = TargetPosTask(api, "SHFE.rb2110", price="ACTIVE")
target_pos_active.set_target_volume(0) # 平所有仓位

while True:
api.wait_update()
... 策略代码 ...

api.close()

108 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

6.10 基基基于于于时时时间间间维维维度度度目目目标标标持持持仓仓仓策策策略略略

本篇文档假设您已经了解 TargetPosTask的用法，文档参考交易辅助工具。

简单来说，TargetPosTask 会创建 task，负责将指定合约调整到目标头寸（默认为账户的该合约净持
仓）。

对于简单的大单拆分功能，可以在 TargetPosTask类中设置拆分手数的上下限，TargetPosTask实例
在下单过程中就会将下单手数随机的拆分，以减少对市场冲击。

但是，对于比较复杂的下单策略，例如 twap（基于时间拆分手数），vwap（基于成交量拆分手数）等，使
用 TargetPosTask来构造策略不是很方便。

我们提供 TargetPosScheduler类帮助用户完成复杂的下单策略，同时提供给用户极大的调整空间。

6.10.1 time_table目目目标标标持持持仓仓仓任任任务务务列列列表表表

TargetPosScheduler使用 time_table参数来描述具体的下单策略。

time_table为 pandas.DataFrame类型。每一行表示一项目标持仓任务，每项任务按照顺序一个个执
行。其应该包含以下几列：

• interval: 当当当前前前这这这项项项任任任务务务的的的持持持续续续时时时间间间长长长度度度，，，单单单位位位为为为秒秒秒，，，经经经过过过这这这么么么多多多秒秒秒之之之后后后，，，此此此项项项任任任务务务应应应该该该退退退出出出，，，剩剩剩余余余未未未调调调整整整到到到的的的目目目标标标持持持仓仓仓，，，会会会留留留到到到下下下一一一项项项任任任务务务中中中

– 注意1：对于最后一项任务，会按照当前项参数，调整到目标持仓后立即退出（时间参数不
对最后一项任务起作用）

– 注意2：时间长度可以跨非交易时间段（可以跨小节等待），但是不可以跨交易日

• target_pos: 当前这项任务的目标净持仓手数

• price: 当当当前前前这这这项项项任任任务务务的的的下下下单单单价价价格格格模模模式式式，，，此此此列列列中中中非非非 None的的的项项项，，，会会会作作作为为为创创创建建建 TargetPosTask实实实例例例的的的 price参参参数数数，，，支支支持持持以以以下下下几几几种种种参参参数数数：：：

– None: 不下单，表示暂停一段时间

– "PASSIVE" : 排队价下单

– "ACTIVE": 对价下单

– Callable (direction: str) -> Union[float, int]: 传入函数作为价格参数，函数参数为下单方向，函
数返回值是下单价格。如果返回 nan，程序会抛错。

6.10.2 TargetPosScheduler执执执行行行目目目标标标持持持仓仓仓任任任务务务列列列表表表

TargetPosScheduler类创建 target_pos_scheduler实例，首先会将 time_table中 interval间隔时间
列转为 deadline，即这项任务结束时间的纳秒数。

然后，依次为 time_table 中的每一项任务创建 TargetPosTask 实例，调整目标持仓，并在到达
deadline时退出。每一项未完成的目标持仓都会留都下一项任务中。

需要注意的是，最后一项任务，是以手数达到目标的，会按照当前项参数，调整到目标持仓再退出。如果
最后一项 price参数为 None（表示不下单），由于无法调整持仓，那么会立即退出。

6.10. 基基基于于于时时时间间间维维维度度度目目目标标标持持持仓仓仓策策策略略略 109

TianQin Python SDK Documentation, Release 3.4.1

6.10.3 简简简单单单示示示例例例

简单示例及说明如下:

time_table = DataFrame([
[25, 10, "PASSIVE"]
[5, 10, "ACTIVE"]
[30, 18, "PASSIVE"]
[5, 18, "ACTIVE"]

], columns=['interval', 'target_pos', 'price'])

target_pos_scheduler = TargetPosScheduler(api, "SHFE.cu2112", time_table)

这个 time_table 表示的下单策略依次是：
1. 使用排队价下单，调整 "SHFE.cu2112" 到 10 手，到达 25s 时退出（无论目标手数是否达到，都不会继
续下单）
2. 使用对价下单，调整 "SHFE.cu2112" 到 10 手，到达 5s 时退出
如果上一步结束时目标持仓已经达到 10 手，这一步什么都不会做，等待 5s 到下一步；
如果上一步结束时目标持仓没有达到 10 手，这一步会继续调整目标持仓到 10 手
3. 使用排队价下单，调整 "SHFE.cu2112" 到 18 手，到达 30s 时退出（无论目标手数是否达到，都不会继
续下单）
4. 使用对价下单，调整 "SHFE.cu2112" 到 18 手
如果上一步结束时目标持仓已经达到 18 手，这一步什么都不会做，立即退出；
如果上一步结束时目标持仓没有达到 18 手，这一步会继续调整目标持仓到 18 手后退出

到此为止，您可以根据您的具体策略构造出任意的 time_table对象，然后调用 TargetPosScheduler
来执行。

为了方便用户使用，我们提供了 twap_table()来生成一个默认的符合 twap策略的 time_table实例。

6.10.4 基基基于于于 TargetPosScheduler的的的 twap策策策略略略示示示例例例

我们在 tqsdk.algorithm - 算法模块 模块中提供了 twap_table()，可方便的生成一个基于 twap 策略的
time_table实例。

在执行算法之前，您还可以定制化的调整 time_table中的具体任务项。

一个完整的 twap策略示例:

from tqsdk import TqApi, TargetPosScheduler
from tqsdk.algorithm import twap_table

api = TqApi(auth="信易账户,用户密码")
quote = api.get_quote("CZCE.MA109")

设置 twap 任务参数，
time_table = twap_table(api, "CZCE.MA105", -100, 600, 1, 5) # 目标持仓 -100 手，600s 内
完成

定制化调整 time_table，例如希望第一项任务延迟 10s 再开始下单
可以在 time_table 的头部加一行
time_table = pandas.concat([

DataFrame([[10, 10, None]], columns=['interval', 'target_pos', 'price']),
time_table

], ignore_index=True)

target_pos_sch = TargetPosScheduler(api, "CZCE.MA105", time_table)

(continues on next page)

110 Chapter 6. 进进进阶阶阶主主主题题题

TianQin Python SDK Documentation, Release 3.4.1

(continued from previous page)

while not target_pos_sch.is_finished():
api.wait_update()

获取 target_pos_sch 实例所有的成交列表
print(target_pos_sch.trades_df)

利用成交列表，您可以计算出策略的各种表现指标，例如：
average_trade_price = sum(scheduler.trades_df['price'] * scheduler.trades_df['volume
→˓']) / sum(scheduler.trades_df['volume'])
print("成交均价:", average_trade_price)
api.close()

6.11 在在在 TqSdk中中中调调调用用用 TqSdk2查查查询询询保保保证证证金金金

TqSdk 没有直接提供查询保证金的接口，但是你可以通过使用 TqSdk2 的直连功能来做到这个效
果。tqsdk和tqsdk2可以在一个py文件中同时运行。

该方法仅支持 TqSdk2中直连CTP柜台时使用。受限制于 CTP柜台的流控机制(每秒 1笔),短时间发送大量
查询指令后,后续查询指令将会排队等待。为了避免盘中的查询等待时间,建议盘前启动程序,对标的合约提
前进行查询:

from tqsdk import TqApi, TqAuth, TqAccount
import tqsdk2

account = tqsdk2.TqCtp(front_url, front_broker, app_id, auth_code, account_id,
→˓password)
api_margin = tqsdk2.TqApi(account = account, auth=tqsdk2.TqAuth("信易账户", "账户密码"))
rate = api_margin.get_margin_rates("SHFE.cu2201")
print(rate)
api = TqApi(TqAccount("期货公司","账号","密码"),auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SHFE.cu2201")
while True:

api.wait_update()
print(quote.datetime)
正常和tqsdk一样执行策略

TqSdk2的直连功能需要企业版权限，有关企业版的具体费用和功能，请参考天勤官方网站如果想了解更多
关于 TqSdk2的直连功能TqCtp，请参考 tqsdk2官方文档

6.11. 在在在 TqSdk中中中调调调用用用 TqSdk2查查查询询询保保保证证证金金金 111

https://www.shinnytech.com/tqsdk_professional/
https://doc.shinnytech.com/tqsdk2/latest/reference/tqsdk2.ctp.html?highlight=tqctp#tqsdk2.TqCtp/

TianQin Python SDK Documentation, Release 3.4.1

112 Chapter 6. 进进进阶阶阶主主主题题题

CHAPTER

SEVEN

参参参与与与TQSDK开开开发发发

7.1 原原原则则则与与与规规规范范范

7.1.1 TqSdk设设设计计计原原原则则则

不不不预预预设设设用用用户户户策策策略略略模模模型型型

我们深刻认识到,量化交易是一个充满竞争与创新的领域,成功的用户总是在不断构思和尝试全新的理念与模
型.在这方面,用户比我们知道得更多,走得也更快. 因此,我们在设计TqSdk时,总是尽力避免对用户的模型结
构做限定,而是专注于为用户提供通用性的资源和能力.

我们的以下设计决策遵循了此原则:

• 不提供策略类模板,只以示例程序方式展示各类策略应用

• 一个策略程序中可以任意获取数据和发出指令

• 允许用户在一个程序中使用任意多个TqApi实例

保保保持持持用用用户户户代代代码码码简简简单单单

我们对TqSdk的一个设计目标是尽量让用户的代码与需求方案保持一致(顺序相同,篇幅相当).

我们的以下设计决策遵循了此原则:

• 不使用多线程,避免用户处理线程同步问题

• 不使用回调模型,避免用户维护状态机状态变量

• 提供专门的调仓工具

• 实盘/模拟/回测/复盘几种不同运行模式切换,只需要在代码中做单点修改

行行行为为为可可可验验验证证证

作为TqSdk库质量管控的关键措施,我们要求 TqSdk在运行时可以记录完整的输入信息,以确保发生问题时可
以稳定重现问题和定位原因. 我们做了这些决定:

• 以数据流衔接库中的各组件

• TqSdk的日志文件完整记录收到的全部数据包

• 专门构建了一个单元测试框架,可以直接用日志作为测试用例输入

113

TianQin Python SDK Documentation, Release 3.4.1

7.1.2 相相相关关关知知知识识识与与与技技技能能能

TqSdk的开发涉及以下知识点，您可能需要先学习它们，才能更好的理解和改进TqSdk的代码

• 金融相关业务知识

TqSdk是用于金融交易领域的专用软件包。我们假定用户和开发者都已经具备相应的基础知
识，在TqSdk的文档中不再详加解释。

• python asyncio

TqSdk的代码大量依赖 python asyncio机制. asyncio的编程模型与传统 python程序差异很大.
我们对于TqSdk的使用者尽量隐藏了 asyncio相关概念,允许用户在不了解 asyncio的情况下
实现绝大多数业务需求.但是对于开发者,若不了解 asyncio,在理解 TqSdk内部代码实现时会
非常困难。

• Diff协议

TqSdk 并不是一个 all-in-one 的包, 它的能力有赖于一系列后台服务的支持. DIFF协议是
TqSdk与后台服务间通讯的主要协议,开发者需对 DIFF有所理解,才能掌握 TqSdk的内部实
现

• Pandas/Numpy

Pandas/Numpy是非常优秀的 python数值计算库. TqSdk利用这些库完成K线序列数据的存储
和操作.

7.1.3 代代代码码码风风风格格格

TqSdk的代码风格遵循 PEP8规范.

7.1.4 日日日志志志规规规范范范

@todo: 待写

7.2 TqSdk整整整体体体结结结构构构

7.2.1 文文文件件件结结结构构构

File Description
api.py TqApi接口主文件
tqhelper.py TqApi辅助代码
exception.py 异常类型定义

objs.py 主要业务数据结构定义
sim.py 本地模拟交易
backtest.py 回测支持
lib.py 交易辅助工具
ta.py 技术指标
tafunc.py 技术分析函数

ctpse/* 穿透式监管信息采集模块
test/* 单元测试用例

demo/* 示例程序

114 Chapter 7. 参参参与与与TqSdk开开开发发发

TianQin Python SDK Documentation, Release 3.4.1

7.2.2 数数数据据据流流流

TqSdk中以数据流的方式连接各组件。TqChan(本质是一个asyncio.Queue)被用作两个组件间的单向数据流管
道，一个组件向 TqChan中放入数据包，另一个组件从 TqChan中依次取出数据包。

实盘运行时，整个数据流结构如下图:

数据包上行流程(以报单为例):

1. 用户程序调用 TqApi中的某些需要发出数据包的功能函数,以 TqApi.insert_order为例

2. TqApi.insert_order函数生成一个需要发出的数据包,将此数据包放入 api_send_chan

3. TqAccount从 api_send_chan中取出此数据包，根据 aid字段，决定将此数据包放入 td_send_chan

4. 连接到交易网关的 websocket client从 td_send_chan中取出此数据包，通过网络发出

数据包下行流程(以接收行情为例):

1. 连接到行情网关的 websocket client从网络收到一个数据包，将其放入 md_recv_chan

2. TqAccount从md_recv_chan中取出此数据包，将它放入 api_recv_chan

3. TqApi从api_recv_chan中取出此数据包，将数据包中携带的行情数据合并到内存存储区中

基于这样的数据流结构，可以通过简单更换部分组件的方式实现不同工作模式。例如模拟交易时，我们用
TqSim替换 TqAccount:

策略回测则是这样:

7.2.3 内内内存存存数数数据据据存存存储储储与与与更更更新新新

按照 DIFF协议推荐的客户端最佳实践，TqApi使用单一变量(TqApi._data)存储所有业务数据,它的结构如下:

在每次收到数据包时，TqApi都会将数据包内容合并到 TqApi._data中. 具体的代码流程如下:

1. websocket client收到数据包,放入 TqApi._pending_diffs

2. wait_update函数发现 TqApi._pending_diffs有待处理数据包,中止异步循环以处理此数据包:

while not self._wait_timeout and not self._pending_diffs: # 这里发现 self._
→˓pending_diffs 非空, 中止 while 循环

self._run_once()

3. wait_update调用 self._merge_diff函数:

for d in self._diffs:
self._merge_diff(self._data, d, self._prototype, False)

4. TqApi._merge_diff函数将收到的数据包并入本地存储.

5. 对于k线之类的序列数据,后续继续将更新的数据复制到 pandas dataframe中

7.2. TqSdk整整整体体体结结结构构构 115

TianQin Python SDK Documentation, Release 3.4.1

7.2.4 异异异步步步任任任务务务调调调度度度

TqApi在 wait_update函数中完成所有异步任务的调度执行.每当用户程序执行 api.wait_update函数时,会调度
所有 task运行,直到收到新数据包或超时 wait_update函数返回,继续执行后续用户代码

7.3 异异异步步步工工工具具具

@todo: 待写

7.4 Web Gui

@todo: 待写

7.5 策策策略略略回回回测测测框框框架架架

@todo: 待写

7.6 单单单元元元测测测试试试

@todo: 待写

116 Chapter 7. 参参参与与与TqSdk开开开发发发

CHAPTER

EIGHT

TQSDK专专专业业业版版版

TqSdk中大部分功能是供用户免费使用的,同时我们也提供了 TqSdk专业版的增值功能供用户选择

如果想使用 TqSdk专业版功能，可以登录个人中心申请15天试用或正式购买

8.1 更更更稳稳稳定定定的的的行行行情情情服服服务务务器器器

在每次的行情服务器升级当中，我们会优先选择连接到免费版行情服务器中的百分之十左右的用户进行升
级，然后在稳定后逐步扩大免费版的升级范围

专业版的行情服务器会在免费版全部升级成功且没有问题之后再进行升级，因此对于 TqSdk的专业版用户
来说，会有更稳定行情服务器连接

8.2 更更更多多多的的的实实实盘盘盘交交交易易易账账账户户户数数数

对于 TqSdk免费版，每个信易账户支持最多绑定一个实盘账户，而天勤量化专业版支持最多一个信易账户
绑定3个实盘账户

信易账户会在用户使用实盘账户时自动进行绑定，直到该信易账户没有能绑定实盘账户的名额(自动绑定功
能需要 TqSdk版本> 1.8.3)

如果需要注册信易账户或者修改您的信易账户绑定的实盘账户，请点击登录用户管理中心

登录成功后显示如下，在下方红框处,用户可以自行解绑/绑定实盘账户，其中解绑操作每天限定一次

如需一个信易账户支持更多的实盘账户，请联系工作人员进行批量购买个人中心

8.3 策策策略略略回回回测测测功功功能能能

策略程序回测是 TqSdk专业版中的功能，能让用户在不改变代码的情况下去回测自己的策略在历史行情的
表现，并且提供对应的web界面来统计用户的回测表现

对于 TqSdk免费版本的用户，每天可以进行3次回测，同时也可以申请模拟账户后模拟运行来检验策略模拟
交易和论坛

117

https://account.shinnytech.com/
https://account.shinnytech.com/
https://account.shinnytech.com/

TianQin Python SDK Documentation, Release 3.4.1

118 Chapter 8. TqSdk专专专业业业版版版

TianQin Python SDK Documentation, Release 3.4.1

8.4 股股股票票票行行行情情情

TqSdk免费版本提供全部的期货、商品/金融期权和上证50、沪深300和中证500的实时行情

购买或申请 TqSdk专业版试用后可提供A股股票的实时和历史行情，TqSdk中股票示例代码参考如下:

SSE.600000 - 上交所浦发银行股票编码
SZSE.000001 - 深交所平安银行股票编码
SSE.000016 - 上证50指数
SSE.000300 - 沪深300指数
SSE.000905 - 中证500指数
SSE.510050 - 上交所上证50etf
SSE.510300 - 上交所沪深300etf
SZSE.159919 - 深交所沪深300etf
SSE.10002513 - 上交所上证50etf期权
SSE.10002504 - 上交所沪深300etf期权
SZSE.90000097 - 深交所沪深300etf期权

8.5 股股股票票票模模模拟拟拟交交交易易易

TqSdk提供了 TqKqStock方法供用户来进行股票的模拟交易

专业版用户可以长久的对同一账户进行模拟股票交易测试

需要注意股票模拟交易下，get_account，get_order，get_position 会返回对应股票交易模型下的 objs ，如
SecurityAccount， SecurityOrder，SecurityPosition

参考代码如下:

from tqsdk import TqApi, TqAuth, TqKqStock

tq_kq_stock = TqKqStock()
api = TqApi(account=tq_kq_stock, auth=TqAuth("信易账户", "账户密码"))
quote = api.get_quote("SSE.688529")
print(quote)
下单限价单
order = api.insert_order("SSE.688529", volume=200, direction="BUY", limit_price=quote.
→˓ask_price1)
while order.status == 'ALIVE':

api.wait_update()
print(order) # 打印委托单信息

print(api.get_account()) # 打印快期股票模拟账户信息

print(api.get_position("SSE.688529")) # 打印持仓信息

for trade in order.trade_records.values():
print(trade) # 打印委托单对应的成交信息

api.close()

8.4. 股股股票票票行行行情情情 119

TianQin Python SDK Documentation, Release 3.4.1

8.6 下下下载载载数数数据据据功功功能能能

数据下载工具 DataDownloader是 TqSdk专业版中的功能

支持专业版用户下载目前 TqSdk提供的全部期货、期权和股票类的历史数据，下载数据支持 tick级别精度
和任意 kline周期

8.7 其其其他他他相相相关关关函函函数数数

query_symbol_ranking()交易所每日成交持仓排名

get_kline_data_series()以起始日期获取 Dataframe格式的 kline数据

get_trading_status()获取指定合约的交易状态，帮助用户实现开盘/跨小节抢单

8.8 期期期权权权交交交易易易 &交交交易易易所所所组组组合合合

TqSdk中期权交易(商品期权、金融期权)和交易所官方组合也是 TqSdk专业版中提供的功能

详细期权说明请点击期权交易 &交易所官方组合

TqSdk中期权和交易所组合合约代码参考如下:

DCE.m1807-C-2450 - 大商所豆粕期权
CZCE.CF003C11000 - 郑商所棉花期权
SHFE.au2004C308 - 上期所黄金期权
CFFEX.IO2002-C-3550 - 中金所沪深300股指期权
SSE.10002513 - 上交所上证50etf期权
SSE.10002504 - 上交所沪深300etf期权
SZSE.90000097 - 深交所沪深300etf期权
CZCE.SPD SR901&SR903 - 郑商所 SR901&SR903 跨期合约
DCE.SP a1709&a1801 - 大商所 a1709&a1801 跨期合约

8.9 工工工作作作时时时间间间内内内的的的天天天勤勤勤客客客服服服支支支持持持

如果您是 TqSdk专业版的年费用户，那么我们将会单独为您建立一个讨论组，里面会有 TqSdk的专门技术
支持人员在工作时间内优先回答您的问题

120 Chapter 8. TqSdk专专专业业业版版版

CHAPTER

NINE

TQSDK2企企企业业业版版版

除了 TqSdk 专业版以外，我们还提供 TqSdk2 企业版本来供用户使用，如果想了解专业版和企业版的区
别，可以点击查看 TqSdk2文档

如果想使用 TqSdk2企业版功能，可以点击个人中心申请15天试用或购买

企业版本提供专业版的全部功能 TqSdk专业版，且 TqSdk和 TqSdk2专业版权限通用，此外还包含如下功能

9.1 TqSdk2直直直连连连功功功能能能

在 TqSdk2中除了通过中继模式接入期货公司以外，还提供用户通过直连模式接入任意一家指定期货公司

除了接入指定期货公司的优点以外，直连模式还带来了一下好处:

• 交易指令直达期货公司，省去中继服务器路径，交易延迟平均减少10ms左右

• 减少了交易服务器依赖，程序运行稳定性提升

9.2 TqSdk2连连连接接接资资资管管管平平平台台台功功功能能能

TqSdk2提供了资管平台的对接支持，支持用户连接到指定资管平台

以连接融航的模拟服务器为例:

from tqsdk2 import TqApi, TqAuth, TqRohon

acc = TqRohon(td_url="tcp://129.211.138.170:10001", broker_id="RohonDemo", app_id=
→˓"shinny_tqsdk_01", auth_code= "qZWmA7iTXaEO2w40", user_name="融航模拟账户", password=
→˓"融航模拟账户密码")
api = TqApi(acc,auth= TqAuth("信易账户","账户密码"))

其中融航模拟的模模模拟拟拟账账账户户户和模模模拟拟拟账账账户户户密密密码码码需要自行和融航联系获取，其他参数在融航模拟下为

td_url="tcp://129.211.138.170:10001" broker_id="RohonDemo" app_id="shinny_tqsdk_01"
auth_code="qZWmA7iTXaEO2w40"

融航实盘情况下将对应信息换成实盘信息即可

资管平台连接模式的详细介绍，请点击 TqRohon .

121

https://doc.shinnytech.com/tqsdk2/latest/advanced/for_tqsdk1_user.html#tqsdk2-tqsdk
https://account.shinnytech.com/
tcp://129.211.138.170:10001

TianQin Python SDK Documentation, Release 3.4.1

122 Chapter 9. TqSdk2企企企业业业版版版

CHAPTER

TEN

天天天勤勤勤用用用户户户论论论坛坛坛

在学习TqSdk的过程中可能会碰到一些疑惑，我们相信用户论坛能够帮助到你。

在用户论坛中你可以：

• 根据关键词搜索已解决问题

• 查看热门问题及其解决方案

• 提出待解决的新问题

• 回答/讨论他人提出的问题

点击进入用户论坛，加入讨论.

123

https://www.shinnytech.com/qa

TianQin Python SDK Documentation, Release 3.4.1

124 Chapter 10. 天天天勤勤勤用用用户户户论论论坛坛坛

CHAPTER

ELEVEN

版版版本本本变变变更更更

3.4.1 (2023/04/24)

• 修复: 回测时，部分情况下 expired字段错误

3.4.0 (2023/04/13)

• 增加：支持国密连接，可以在 TqAccount()构造时指定 sm参数为 True来启用. 当启用国密时仅支
持: win7或以上, ubuntu 22.04或以上, debian 12或以上

3.3.0 (2022/11/22)

• 增加：支持广州期货交易所 GFEX，如果用户需要交易广期所合约需要升级到此版本以上

3.2.12 (2022/10/20)

• 优化: query_all_level_finance_options()增加 ETF期权标的，文档补充完整 ETF基金名称

• docs：修正文档，添加上交所和深交所中证1000ETF和深交所创业板ETF代码示例

3.2.11 (2022/07/27)

• 增加：下载数据时 csv_file_name参数支持 str / asyncio.StreamWriter两种类型

• 修复：vwap_table手数计算错误的问题

3.2.10 (2022/07/20)

• 增加：增加中证 1000指数，免费用户可获取该指数行情，参考文档合约,行情和历史数据

• 修复：回测中没有正常更新 quotes下的 expire_rest_days字段的问题

• 修复：回测 web_gui图表没有显示成交标注、持仓线的问题

3.2.9 (2022/07/07)

• 增加：下载 tick数据时增加 average列

• 增加：get_tick_data_series()接口返回值中增加 average列

• 优化：下载数据时优化 cpu占用

• 优化：tqsdk内部各个模块使用统一的时间处理函数

• 修复：TargetPosTask及 twap增加添加普麦、早籼稻、粳稻及晚籼稻期货暂不支持的提示

• 修复：query_symbol_ranking()接口某些情况可能报错的问题

3.2.8 (2022/04/29)

• 修复：下载多合约 klines时数据可能未完全收全的问题

• 修复：支持多进程下使用 get_kline_data_series()、get_tick_data_series()接口

3.2.7 (2022/04/22)

125

TianQin Python SDK Documentation, Release 3.4.1

• 优化：对多线程用例，增加可能的错误提示

• 优化：TqApi的 debug默认值修改为 None，且 debug为 None情况下在磁盘剩余空间大于 3G时才可
能开启日志

• docs：增加 ETF期权本地计算卖方保证金示例 o74，完善 targetpostask的示例文档，完善 Position下
orders定义，统一修正文档大小写、变量命名等

3.2.6 (2022/03/09)

• 修复：修正深交所 ETF期权的昨结算（pre_settlement）字段未正确显示的问题

3.2.5 (2022/03/09)

• 修复：修正上交所 ETF期权的昨结算（pre_settlement）字段未正确显示的问题

• 修复：TargetPosTask及 twap添加强麦期货暂不支持的提示

• 修复：api.insert_order没有检查 advanced参数

3.2.4 (2022/03/07)

• 优化：某些情况下启用 web_gui后网页卡顿的问题

• 修复：修正上交所 ETF期权的昨结算（pre_settlement）字段

• 修复：TargetPosTask及 twap添加动力煤期货暂不支持的提示

• docs：修正文档，增加 tqkq()的示例，增加在 TqSdk中调用 TqSdk2查询保证金文档

3.2.3 (2022/02/16)

• 修复：query_all_level_options接口查询 ETF期权可能报错的问题

• 修复：提升程序在连续订阅 K线时的运行速度

• 修复：使用快期模拟账户交易，在断线重连后程序可能报错的问题

• docs：修正文档

3.2.2 (2022/01/26)

• 增加：支持在回测中使用本地风控模块

• 优化：规范化测试脚本，能尽早发现由于依赖库版本升级，而导致部分代码写法不兼容的错误

• docs：修正文档字体显示格式，增加股票回测文档对股票合约进行回测

3.2.1 (2022/01/11)

• 优化：打印通知时，显示期货账户，改善多账户下用户使用体验

• 优化：免免免费费费用用用户户户 每日回测 3 次，支持其回测时交易股票；专专专业业业版版版用用用户户户 回测次数及交易品种不受限
制，专业版购买网址：https://account.shinnytech.com。

• 修复：linux下使用多进程时，报单号可能重复的问题

• docs：修改交易相关的 get系列函数文档及示例代码

• TqSdk计计计划划划在在在 20220601之之之后后后放放放弃弃弃支支支持持持 Python 3.6版版版本本本，，，请请请尽尽尽快快快升升升级级级 Python版版版本本本。。。建议升级到 3.8
及以上，以保证所有依赖库都可以使用最新版。

3.2.0 (2021/12/31)

• 新增：TqSimStock 类实现本地股票模拟交易，同时支持在实盘/回测模式下使用。 专专专业业业版版版用用用户户户 可
用，专业版购买网址：https://account.shinnytech.com。

• web_gui：修复回测时不能正常显示结果报告的问题

• 修复：windows下调用 get_kline_data_series()时，可能出现缓存文件不允许重复重命的问题

126 Chapter 11. 版版版本本本变变变更更更

https://account.shinnytech.com
https://account.shinnytech.com

TianQin Python SDK Documentation, Release 3.4.1

3.1.1 (2021/12/24)

• 修复：穿管采集文件读取失败

3.1.0 (2021/12/24)

• 新增：为各种账户类型增加接口调用，支持 IDE 更好的提供代码提示。TqSdk 目前支持以
下账户类型 TqAccount、TqKq、 TqKqStock、TqSim，本次重构为以上账户类型分别添加了
get_account、get_position、get_order、get_trade几个接口，明确了其返回值的类型。

例如：TqKq实例调用 get_account()，返回 Account类型实例；

TqKqStock实例调用 get_account()，返回 SecurityAccount类型实例。

• 修复：TargetPosTask及 twap增加添加红枣期货暂不支持的提示

• docs：更新开盘抢单示例代码

3.0.3 (2021/12/10)

• 修复：从服务器更新节假日表，修复 get_trading_calendar()接口文档及报错信息

3.0.2 (2021/12/07)

• 修复：调用 get_kline_serial()接口获取股票前复权 Kline时，复权计算结果可能出错的问题

• 新增：节假日表添加 2022年节假日信息

• 新增：支持在 python 3.10下使用 TqApi

• web_gui：支持多账户下使用

• docs：更新示例合约代码

3.0.1 (2021/11/26)

• 修复：调用 query_symbol_info()，当参数中包含主连/指数合约会报错的问题

• 修复：在某些情况下，回测时获取期权及标的合约的多合约 Kline可能报错的问题

• 修复：回测时取主连合约，如果用 quote.underlying_quote直接读取标的合约，在标的合约变
更时，可能未重新订阅行情的问题

• 优化：取消网络连接关闭时屏幕输出，改为存入日志文件

• docs：完善 get_account()、get_position()、get_order()、 get_trade() 函数返回值类
型文档说明，完善专业版股票模拟交易文档，完善 TqSdk2连接资管平台功能融航接入文档

3.0.0 (2021/11/12)

• 增加：TqKqStock快快快期期期股股股票票票模模模拟拟拟账户类型，支持股票模拟交易。专专专业业业版版版用用用户户户可用，专业版购买网
址：https://account.shinnytech.com。

• 增加：TqRuleAccOpenVolumesLimit类，日内累计开仓手数限制

• 优化：使用 sgqlc库生成合约服务的 graphql查询

2.9.4 (2021/11/04)

• 增加：query_symbol_info()接口返回值中增加 upper_limit, lower_limit这两个字段

• 优化: 多账户模式支持回测模块

• 优化: query系列函数，发送的查询请求中合约列表长度不能大于 8192

• 优化: 网络连接优化断线重连机制

2.9.3 (2021/10/28)

127

https://account.shinnytech.com

TianQin Python SDK Documentation, Release 3.4.1

• 增 加 ：TqRuleOpenCountsLimit、TqRuleOpenVolumesLimit 类 ， 以 及
add_risk_rule()、delete_risk_rule()接口，支持本地风控功能

• 增加：TqRiskRuleError错误类型，可以捕获风控触发的错误

2.9.2 (2021/10/20)

• 修复：实盘账户无法使用 get_trading_status()接口的问题

• docs：完善专业版文档

2.9.1 (2021/10/19)

• 增加：get_trading_status()接口，支持开盘抢单功能

• 增 加 ：query_symbol_info() 接 口 返 回 值 中 增 加 product_id, expire_rest_days,
trading_time_day, trading_time_night几个字段

• 优化：TqSim回测报告增加部分字段，和 web_gui显示回测报告一致

• 优化：get_kline_data_series()、get_tick_data_series()接口报错

2.9.0 (2021/09/29)

• 增加：query_symbol_info() 接口返回值中增加 pre_open_interest, pre_settlement,
pre_close这三个字段

• 优化：重构网络连接，增加多账户测试用例

• 优化：简化回测结束后用户依然需要查看 web_gui时的代码，详情参考回测结束在浏览器中查看绘图
结果

• 优化：网络连接失败时，优化对用户的提示信息

• 优化：实盘账户实盘不支持主连和指数交易，提前抛错提示用户

• docs：更新文档，专业版承诺提供A股股票行情

2.8.6 (2021/09/16)

• 增加：TqApi增加 query_his_cont_quotes()接口，可以获取过去 n个交易日的历史主连信息

• 增加：通知模块 TqNotify，帮助用户收集通知信息并做定制化处理

• docs：完善风控文档，增加专业版权限函数说明

2.8.5 (2021/09/06)

• 增加：TqApi增加 query_symbol_ranking()接口，支持查询合约成交排名/持仓排名。

• 增加：TqApi增加 query_option_greeks()接口，返回指定期权的希腊指标。

• 修复：pyinstaller工具由于缺少初始合约文件导致打包失败

• 优化：get_delta()、get_theta()、get_rho()、 get_bs_price()、get_impv() 接口中
option_class参数支持类型扩展为 str 或者 pandas.Series，详情见文档

2.8.4 (2021/08/31)

• 修复：由于缺少初始合约文件，TqApi初始化可能失败的问题

2.8.3 (2021/08/30)

• 增 加 ：is_changing 接 口 增 加 对 于 委 托 单 is_dead()、is_online()、
is_error()、trade_price()字段支持判断是否更新

• 修复：TqApi初始化可能失败的问题

• 优化：将已知下市合约直接打包在代码中，缩短 TqApi初始化时间

128 Chapter 11. 版版版本本本变变变更更更

TianQin Python SDK Documentation, Release 3.4.1

• docs：完善主力切换规则说明，将阿里源替换为清华源

2.8.2 (2021/08/17)

• 增 加 ：is_changing 接 口 增 加 对 于 合 约 expire_rest_days()， 持 仓 pos_long()、
pos_short()、pos()字段支持判断是否更新

• 修复：2.8.1版本重构后，不支持多线程运行的问题

• docs：更新合约字段示例说明

2.8.1 (2021/08/12)

• 增 加 ： 增 强 在 协 程 中 的 支 持 ， 以 下 接 口 query_quotes()，query_cont_quotes()，
query_options()，query_atm_options()， query_symbol_info()，query_all_level_options()，
query_all_level_finance_options()， 支 持 协 程 中 in_options, at_options,
out_options = await api.query_all_level_finance_options("SSE.510300", 4.
60, "CALL", nearbys = 1)写法，参考文档：单线程创建多个异步任务

• 修复：target_pos_task优化报错提示，已经结束的 TargetPosTask实例再调用 set_target_volume设置手
数会报错。参考文档：cancel()

• 修复：下载历史数据时，某些数据未按照最小价格变动单位保留相应小数位数的问题

• 重构：优化 wait_update、is_changing接口的实现，增强对协程的支持

• docs：完善回测字段规则文档说明

2.8.0 (2021/08/05)

• 增加：支支支持持持免免免费费费用用用户户户每每每日日日回回回测测测 3次次次

2.7.2 (2021/07/30)

• 增加：支支支持持持在在在回回回测测测中中中使使使用用用 query系系系列列列函函函数数数，，，查查查询询询结结结果果果为为为回回回测测测当当当天天天的的的合合合约约约信信信息息息

• 增加：Quote对象增加 underlying_quote属性，值是一个 Quote对象（为 underlying_symbol属性对应的
合约引用）或者是 None

• web_gui：修复在 safari和 firefox无法正常显示的问题

• docs：完善支持用户自助购买文档

2.7.1 (2021/07/21)

• 修复：query系列查询看跌期权时，未返回指定的实值、平值、虚值序列的问题

• docs：完善 position文档说明

• docs：补充期权示例

2.7.0 (2021/07/15)

• 增加：去去去除除除 Cython编编编译译译，，，本本本地地地代代代码码码全全全部部部开开开源源源

• 增加：支支支持持持 ARM架架架构构构下下下 CPU的的的安安安装装装使使使用用用

• 增加：TqApi增加 query_all_level_finance_options()接口，支持查询指定当月、下月、季
月等到期月份的金融期权。

• 增加：支持上期能源下载 ticks 5档行情

• 修复：某些参数可能造成 twap无法执行的问题

• 修复：客户端发送的 variables中变量值不支持空字符串、空列表或者列表中包括空字符串

• 删除：为期权持仓、成交、委托单对象添加部分期权合约信息的功能（2.6.5增加功能）

• doc：添加隔夜开盘抢单示例，不再建议用户自定义次席连接

129

TianQin Python SDK Documentation, Release 3.4.1

2.6.6 (2021/07/05)

• 修复：支持 pandas 1.3.0版本

• 修复：回测中某些有夜盘的合约，报夜盘时间不在可交易时间段的问题

• web_gui：成交列表中成交价格默认显示4位小数

• doc：完善钉钉推送文档

2.6.5 (2021/06/30)

• 增加：为期权持仓、成交、委托单对象添加部分期权合约信息，方便用户查看

• 增加：回测时，Quote对象支持读取 expired值

• 修复：TargetPosScheduler最后一项等到目标持仓完成退出，最后一项设置的超时时间无效

• 修复：回测时如果先订阅日线，可能出现无法成交的问题

• doc：完善期权文档、增加 TqSdk2企业版文档说明

2.6.4 (2021/06/23)

• 增加：Quote增加 expire_rest_days属性，表示距离到期日天数

• 增加：TqApi增加 query_symbol_info()接口，支持批量查询合约信息

• 增加：TqApi增加 query_all_level_options()接口，返回标的对应的全部的实值、平值、虚值
期权

• 增加：TqApi中 query_atm_options()接口，扩大参数 price_level支持范围

• 增加：sim.tqsdk_stat增加总手续费字段

• 修复：回测中某些有夜盘的合约，报夜盘时间不在可交易时间段的问题

• 修复：回测报告中，在有期权交易时，每日收益值有错误

• 修复：回测中限制 get_quote_list()参数列表长度，最多支持 100合约

• web_gui：修复部分成交记录箭头标注位置不对的问题

• web_gui：修复报告页面日期没有显示的问题

• web_gui：支持代码运行中可以修改指标颜色

• web_gui：成交列表中，部分成交价格没有按照最小变动价格保留小数位数的问题

• doc：完善期权文档

• doc：完善回测文档

2.6.3 (2021/06/11)

• 修复：twap策略某些参数组合无法执行的问题，修改后生成随机手数可能最后一笔的下单手数小于设
置的最小手数

• 修复：TqSim模拟交易期权时，某些情况下标的行情不更新的问题

• 完善文档：增加指数、主连行情、期权使用文档说明

• web_gui：增加回测报告图表页面（增加每日资金、每日盈亏、滚动夏普比率、滚动索提诺比率图表）

• web_gui：指标线可以绘制虚线

2.6.2 (2021/06/03)

• 修复：在回测某些时间段时，指数无法交易的问题

• 重构：TqSim回测统计函数重构，增加 sortino_ratio索提诺比率指标

130 Chapter 11. 版版版本本本变变变更更更

TianQin Python SDK Documentation, Release 3.4.1

• 重构：算法模块中产生随机序列的方法

• 优化：target_pos_task报错提示文字

• 优化：网络链接建立、断连时的报错提示文字

• 优化：单线程创建多个异步任务文档完善，参考文档：单线程创建多个异步任务

• web_gui：修复成交量图在高分屏下高度错误的问题

• web_gui：k线文字标注为开高低收

• web_gui：图表不显示 BoardId

2.6.1 (2021/05/27)

• 增 加 ： 增 强 在 协 程 中 的 支 持 ， 以 下 接 口 get_quote()，get_quote_list()，
get_kline_serial()，get_tick_serial() 支 持 协 程 中 quote = await api.
get_quote('SHFE.cu2106')写法，参考文档：单线程创建多个异步任务

• 增加：vwap_table()的示例代码，参考链接 vwap_table -交易量平均加权算法

• 优化：twap_table()的示例代码，参考链接 twap_table -时间平均加权算法

• 优化：在网络链接开始尝试重连时，增加通知和日志

• 修复：多次创建同合约 TargetPosTask实例，可能抛错的问题

• 完善文档：补充期权示例文档

2.6.0 (2021/05/20)

• 增加：tqsdk.algorithm模块提供 vwap_table()帮助用户完成 vwap算法下单。

• 增加：TqTimeoutError错误类型，方便用于捕获此错误

• 增加：TargetPosTask实例提供 cancel()、is_finished()方法

• 修复：在异步代码中调用 get_quote函数时，可能遇到 Task未被引用而引发的错误

• 修复：Windows中下载数据时，文件已经被占用而无法继续下载时，TqSdk没有正常退出的错误

• 优化：针对初始化时的可能出现超时退出的问题，增加错误收集和提示

2.5.1 (2021/05/13)

• 增加：负责策略执行工具 TargetPosScheduler，帮助用户完成复杂的下单策略，同时提供给用户
极大的调整空间。文档参考基于时间维度目标持仓策略

• 增加：TqSim支持用户设置期权手续费

• 修复：协程中调用 get_quote可能超时的问题

• 修复：首次登录期货账户可能会抛错的问题

• 优化：修改文档，增加测试脚本日志输出

2.5.0 (2021/04/27)

• 增加：get_quote_list()接口，支持批量订阅合约。注意其参数和返回值都是 list类型。

• 增加：版本通知功能，后续版本升级将在 TqSdk版本大于等于 2.5.0以上版本做通知

• 优化：TqApi初始化逻辑，减少了一大半 TqApi初始化时间

2.4.1 (2021/04/16)

• 增加：TqSim支持 BEST / FIVELEVEL市价单

• 修复：回测情况下可能遇到单个合约行情回退的问题

131

TianQin Python SDK Documentation, Release 3.4.1

• 修复：get_position获取持仓添加默认的 exchange_id, instrument_id

• 修复：回测时用到多合约 Kline且其中某个合约在回测区间内下市，可能导致程序崩溃

• 重构：合约服务模块独立为一个模块，增加了查询合约服务等待时间，减少了api初始化创建失败的概
率

• 完善文档

2.4.0 (2021/03/30)

• 增加：twap增加 trades，average_trade_price属性，用于获取成交记录和成交均价

• 增加：query_cont_quotes接口增加 has_night参数，详情参考 query_cont_quotes()

• 增 加 ： 支支支 持持持 用用用 户户户 回回回 测测测 中中中 设设设 置置置 TqSim 的的的 保保保 证证证 金金金 和和和 手手手 续续续 费费费 ， 详 情 参 考
set_margin()、set_commission()、get_margin()、get_commission()

• 增加：支支支持持持用用用户户户回回回测测测中中中使使使用用用 quote.underlying_symbol获获获取取取主主主连连连对对对应应应的的的主主主力力力合合合约约约，详情参考回测时获
取主连合约标的

• 修复：回测时大于日线周期的 K线的收盘时间错误

2.3.5 (2021/03/19)

• 增加：twap支持在多账户下使用

• 重构： TqSim模拟交易模块，修复了 TqSim模拟交易期权时部分字段计算错误的问题，增加测试用例
覆盖，提高 TqSim模块准确性

• 修复：TargetPosTask能支持多账户下使用

• 修复：之前版本下载无任何成交的合约会显示在 0%卡住或退出程序，修改为超时（30s）之后跳过该
无成交合约下载后续合约

• 完善文档：增加 TargetPosTask大单拆分模式用法示例，修改完善期权文档等

• 依赖库升级：pandas版本要求为 >= 1.1.0

2.3.4 (2021/03/11)

• 增加：TargetPosTask 增增增加加加 min_volume, max_volume 参参参数数数，，，支支支持持持大大大单单单拆拆拆分分分模模模式式式，详情参考
TargetPosTask

• 重构：TqSim模拟交易模块，修复了 TqSim模拟交易时账户、持仓部分资金字段计算错误的 bug

• 修复：query_options(), query_atm_options()接口中 has_A参数不生效的 bug

• 修复：在使用 TargetPosTask时，主动调用 api.close()程序不能正常退出的错误的 bug

• 修复：回测时使用多合约 Kline可能引起的 bug

• 修复：在节假日时回测，由于节假日当日无夜盘而导致部分夜盘品种的交易时间段错误

• 修复：web_gui在切换合约/周期时未更新用户绘图数据的 bug

• 修复：web_gui幅图数据默认保留两位小数显示

2.3.3 (2021/02/19)

• 修复获取交易日历接口在低版本 pandas下结果可能出错的问题

2.3.2 (2021/02/08)

• 增加 get_trading_calendar()接口，支持用户获取交易日历

• 增加 query_atm_options()接口，支持用户获取指定档位期权

• 修复在回测时订阅当天上市的合约可能出现报错的情况

132 Chapter 11. 版版版本本本变变变更更更

TianQin Python SDK Documentation, Release 3.4.1

• 修复 web_gui回测时某些情况下定位不准确的问题

• 优化 query_quotes() ,支持用户查询交易所的全部主连或指数

• 优化 TqSim交易失败的提示

• 优化客户端发送的数据包量，降低流量占用

2.3.1 (2021/02/01)

• 增加 t96.py macd绘图示例，详情参考 t96 -附图中画MACD

• 修复获取大量合约的多合约Kline，有可能等待超时的问题

• web优化图表，回测时图表跳转到回测时间段

• 优化测试用例、文档

2.3.0 (2021/01/20)

• 股票实盘交易即将上线

• 回测增加支持获取多合约 Kline，现在可以在回测中使用期权相关函数

• TqSim增加属性 tqsdk_stat，提供给用户查看回测交易统计信息，详情参考策略程序回测

• 修复 twap可能少下单的问题，增加针对 twap的测试用例

2.2.6 (2021/01/13)

• 增加接口 get_kline_data_series()、get_tick_data_series()，支持 专专专业业业版版版用用用户户户 获取一
段时间 K线或 Tick的用法

• 修复 web需要拖拽才能更新 K线的问题，支持自动更新 K线

• 修复下载多合约 K线，列名顺序错误的问题

• 修复 web盘口总手数可能显示错误的问题

• 修复 draw_text设置颜色无效的问题

2.2.5 (2020/12/29)

• 复权统一命名规范 "F"表示前复权，"B"表示后复权，请检查您的代码是否符合规范

• 修复下载复权数据时，由于下载时间段无复权信息，可能导致失败的问题

• 修复复盘时，下单可能会报错的问题

• 修复在 get_kline_serial / get_tick_serial在 pandas=1.2.0版本下用法不兼容的问题

• 完善期权相关文档

2.2.4 (2020/12/23)

• 修复新用户第一次安装 TqSdk可能遇到依赖库 pyJWT版本不兼容的错误

• 修复 web_gui拖拽不能缩小图表的问题

2.2.3 (2020/12/22)

• 修复 twap在退出时由于未等待撤单完成，可能造成重复下单的问题

• 修复 twap未按时间随机，成交后立即退出的问题

• 修复在复盘模式下 TqSim设置初始资金无效

• 修复 web绘制线型无法设置颜色的问题

• 修复回测模式下连接老版行情服务器无法运行问题

133

TianQin Python SDK Documentation, Release 3.4.1

2.2.2 (2020/12/17)

• 支支支持持持获获获取取取复复复权权权后后后 klines/ticks，详情请参考文档 get_kline_serial()、get_tick_serial()

• 支支支持持持下下下载载载复复复权权权后后后 klines/ticks，详情请参考文档 DataDownloader

• Quote对象增加除权表(stock_dividend_ratio)，除息表(cash_dividend_ratio)两个字段，详情请参考文档
Quote

• 修复 twap算法在手数已经成交时状态没有变为已结束的 bug

• 修复文档中 reference/tqsdk.ta页面内不能跳转连接

2.2.1 (2020/12/14)

• 修复用户使用 pyinstaller打包文件，不会自动添加穿管认证文件和 web资源文件的问题

2.2.0 (2020/12/08)

• 更更更换换换 web_gui绘绘绘图图图引引引擎擎擎，，，极极极大大大改改改善善善 web_gui交交交互互互性性性能能能

• 由由由于于于后后后续续续行行行情情情服服服务务务器器器升升升级级级等等等原原原因因因，，，建建建议议议用用用户户户 2020/12/31号号号前前前将将将 tqsdk升升升级级级至至至 2.0以以以上上上版版版本本本

• 修复发布包中缺失 demo文件夹的问题

• 修改 lib示例文档

2.1.4 (2020/11/26)

• 增加计算波动率曲面函数，详情参考 VOLATILITY_CURVE()

• TargetPosTask支支支持持持 price参参参数数数为为为函函函数数数类类类型型型，详情参考 TargetPosTask

• 优化下载数据体验，已下市无数据合约提前退出

• 修复在复盘情况下会持续重复发送订阅合约请求的问题，可以改善复盘连接成功率

• 修改优化文档

2.1.3 (2020/11/20)

• 修复 twap在某些边界条件下无法下单的 bug

• 修复 linux平台下 web_gui可能因为端口占用无法启动网页

• DataDownloader.get_data_series()函数使用可能导致内存泄漏，暂时下线修复

2.1.2 (2020/11/19)

• 下载数据工具支持默认下载 ticks五档行情

• 下载数据工具增加 get_data_series 接口，可以获取 dataframe 格式数据，详情请参考
get_data_series()

• 优化下载数据体验，无数据合约提前退出

• 修复 twap算法可能无法持续下单的 bug

• web_gui替换新版 logo

• web_gui支持 K线图放大显示

2.1.1 (2020/11/18)

• 增加 psutil依赖包

2.1.0 (2020/11/17)

• 增增增加加加多多多账账账户户户功功功能能能，详情请参考 multiaccount

134 Chapter 11. 版版版本本本变变变更更更

TianQin Python SDK Documentation, Release 3.4.1

• 优化日志模块，明确区分屏幕输出、日志文件中的日志格式，并在 TqApi中提供参数 disable_print，
可以禁止 TqApi在屏幕输出内容，详情请参考 TqApi

• 修复复盘时 web_gui时间显示错误

• 优化测试用例执行流程，支持并行运行测试

• 修改、优化优化文档

• Python >=3.6.4, 3.7, 3.8, 3.9才能支持 TqSdk 2.1.0及以上版本

2.0.5 (2020/11/03)

• 优化：Quote对象增加若干字段：instrument_name、 exercise_year、exercise_month、last_exercise_datetime、exercise_type、public_float_share_quantity，
详情请参考文档 Quote

• 修改：query_options接口参数名调整，兼容之前的用法

• 修复：CFFEX.IO指数回测可能报错的bug

• 修复：快期模拟在 web_gui中优化用户名显示

• 修复：未设置过 ETF期权风控规则的账户首次设置风控规则时可能报错

• 优化文档：增加 query系列函数返回数据类型的注释

2.0.4 (2020/10/13)

• 增加 Python支持版本说明(3.6/3.7/3.8)

• 修复指数不能正常回测问题

• 修复 2020/08/03-2020/09/15时间内下市合约查询失败的问题

2.0.3 (2020/09/23)

• 修复 api对不存在合约名称的错误处理

• 增加下载委托单和成交记录的示例 downloader_orders -下载委托单和成交记录

• 增加 algorithm算法模块，增加 twap算法以及对应的 demo示例 twap_table -时间平均加权算法

2.0.2 (2020/09/18)

• 2020/10/01以后，免费版用户不再支持回测，下载数据等功能，点击了解专业版和免费版区别

• 修改中证 500的合约名称为 SSE.000905

• 修改 TqAccount检查参数类型并提示用户

2.0.1 (2020/09/17)

• 股票行情正式上线，点击查看详情合约,行情和历史数据

• 发布 TqSdk专业版，点击查看详情 TqSdk专业版

• 支持 ETF期权交易，支持的期货公司名单参见点击查看详细说明

• 提供新版合约接口服务 query_quotes()、query_cont_quotes()、query_options()，替代
原有 _data用法，建议尽早换用

• 增加设置、读取 ETF期权风控规则的接口，set_risk_management_rule()、get_risk_management_rule()

• 增加 TqAuth用户认证类，使用 TqApi时 auth为必填参数，TqAuth，兼容原有 auth用法。

• 增加权限校验，提示用户限制信息

• 修改为默认不开启 debug记录日志

• 修复 TqKq登录失败的问题

135

https://www.shinnytech.com/tqsdk_professional/
https://www.shinnytech.com/blog/tq-support-broker/

TianQin Python SDK Documentation, Release 3.4.1

• 修改、优化文档及测试用例

1.8.3 (2020/07/29)

• 修复：pandas的 consolidate函数调用可能会造成 K线数据不更新

• 修复：api.insert_order没有检查大商所期权不支持市价单

• 优化用户 import pandas遇到 ImportError时问题提示

• 更新优化文档，增加股票相关示例，更新示例中的期货合约，标注文档中 objs对象类型说明

1.8.2 (2020/07/07)

• 增加提供高级委托指令 FAK、FOK，并增加相关文档说明高级委托指令、示例代码

• 本地模拟交易 sim支持 FAK、FOK交易指令，快期模拟暂不支持

• 优化登录请求流程

• 优化测试用例代码，增加关于交易指令的测试用例

• 完善文档内容

1.8.1 (2020/06/19)

• 增加 TqKq账户类型，可以使用统一的快期模拟账户登录，详情点击模拟交易和论坛

• 增加支持指数回测

• 支持 with TqApi() as api写法

• quote对象增加 exchange_id字段，表示交易所代码

• 重构 sim模块代码，便于接入新版行情服务器

• 修复 settargetpos回测时，在一个交易时段内最后一根 K线下单无法成交的 bug

• 修复回测时某些品种夜盘无法交易的 bug

• 修复 ticksinfo函数在 pandas版本低于 1.0.0无法正常使用的 bug

• 优化日志输出，实盘下默认启用日志

• 更新 logo，整理优化文档，增加股票行情、主连获取主力等文档说明，优化示例代码目录结构

• 修改、优化测试用例及 CI流程

1.8.0 (2020/05/12)

• 股票行情测试版发布，_stock参参参数数数设设设置置置为为为 True可可可以以以连连连接接接测测测试试试行行行情情情服服服务务务器器器，，，提提提供供供股股股票票票数数数据据据详细说明请
点击查看

• 增加计算 ticks开平方向函数(详见: get_ticks_info())

• 修复 sim撤单未检查单号是否可撤

• 重构代码，优化模块划分

• 修改测试脚本和测试用例，提高持续集成效率

1.7.0 (2020/04/16)

• 支支支持持持期期期权权权模模模拟拟拟交交交易易易，，，支支支持持持期期期权权权回回回测测测

• 增加期权指标的计算公式 (希腊值、隐含波动率、理论价等)

• 增加TqSim模拟交易成交时间判断 (非交易时间段下的委托单将被判定为错单，以减小模拟帐号与实盘
的差距)

136 Chapter 11. 版版版本本本变变变更更更

https://www.shinnytech.com/blog/%e5%a4%a9%e5%8b%a4%e9%87%8f%e5%8c%961-8-0_beta%ef%bc%8c%e6%94%af%e6%8c%81%e8%82%a1%e7%a5%a8%e8%a1%8c%e6%83%85%e8%8e%b7%e5%8f%96%ef%bc%81/
https://www.shinnytech.com/blog/%e5%a4%a9%e5%8b%a4%e9%87%8f%e5%8c%961-8-0_beta%ef%bc%8c%e6%94%af%e6%8c%81%e8%82%a1%e7%a5%a8%e8%a1%8c%e6%83%85%e8%8e%b7%e5%8f%96%ef%bc%81/

TianQin Python SDK Documentation, Release 3.4.1

• 增加账户、持仓中的市值字段 (如果交易了期权，则模拟帐号的账户、持仓字段的定义有一些改变(详
见: tqsdk.objs.Account))

• 修复一个可能导致复盘连接失败的问题

• 优化示例代码

• 优化文档 (增加 期权交易 & 交易所官方组合 文档内容、增加在 在无人监控环境下执行策略 教程内
容、优化文档其他细节）

1.6.3 (2020/03/16)

• 修复vscode插件中不能登录交易的bug

• 增加免责声明

• 增加、完善测试用例

• 修改文档

1.6.2 (2020/02/18)

• 修改 web_gui默认显示的 ip地址为 127.0.0.1

• 修复 web_gui不显示成交记录箭头的问题

• 策略结束后 api将关闭所有 web链接

• 优化对 vscode的支持

• 增加 Quote的 option_class (期权方向)和 product_id (品种代码)字段

• 优化文档

1.6.1 (2020/02/12)

• 修复 web_gui不显示成交记录的问题

• 修复 python3.8下设置 web_gui参数无效的问题

1.6.0 (2020/02/11)

• 交易网关升级,所所所有有有用用用户户户需需需升升升级级级至至至 1.6.0版版版本本本以以以上上上

• 修复参数搜索时由于 TargetPosTask单实例造成的内存泄漏

• web_gui参数格式改成 [ip]:port,允许公网访问

• 改进 web界面，增加分时图，优化盘口显示内容，修复相关问题

• 修改 barlast()的返回值为 pandas.Series类型序列

• 优化回测的成交时间准确性

• 完善文档内容

1.5.1 (2020/01/13)

• 优化 TqApi参数 web_gui,允许指定网页地址和端口(详见:策略程序图形化界面)

• 更新优化 vscode插件以及web页面

• 简化画图函数color的参数

• 增加 barlast功能函数(详见: barlast())

• 优化多合约k线报错提示及示例

• 修复 TargetPosTask进行参数搜索时无法正确执行的bug

• 修复可能触发的回测结果计算报错的问题

137

TianQin Python SDK Documentation, Release 3.4.1

• 增加测试用例

• 完善文档内容

1.5.0 (2020/01/06)

• 支持股票上线准备，增加天勤用户认证

• TqSim的 trade_log改为公开变量

• 完善文档内容

1.4.0 (2019/12/25)

• 在 TqSdk中直接支持复盘功能(详见: replay)

• 增加回测报告内容(胜率、每手盈亏额比例)

• 从当前版本开始，不再支持天勤终端合约代码图形显示

• 修复 web_gui功能中的部分已知问题

• 修复在一些情况无法输出回测报告的问题

• 修复使用 slave/master多线程模式时的报错问题

• 修复回测结束前最后一条行情未更新的bug

• 从 logger中分离从服务器返回的通知信息(以便单独处理或屏蔽)

• 修复使用 TargetPoseTask实例时可能引发的报错

• 完善文档内容

1.3.2 (2019/12/19)

• 修复在填写了画图的 color参数时引起的报错

• 修复在 vscode插件和天勤终端中不能运行策略的bug

• 完善文档内容

1.3.1 (2019/12/18)

• 支持通过 tqsdk.TqApi内设设设置置置 web_gui=True参参参数数数以以以实实实现现现实实实盘盘盘/回回回测测测的的的图图图像像像化化化支支支持持持 , (详见:策略程序
图形化界面)

• 增加支持 Python3.8

• 完善 TqSdk各公开函数的参数类型标注及函数返回值类型标注

• 将 api中除业务数据以外的所有变量私有化

• 完善测试用例

• 完善文档内容

1.2.1 (2019/12/04)

• 完 善 insert_order() 函 数 返 回 的 order 的 初 始 化 字 段 ： 增 加
limit_price、price_type、volume_condition、time_condition字段

• 增加 quote行情数据中的 trading_time、expire_datetime、delivery_month、delivery_year、ins_class字段

• 删除 quote行情数据中的 change、change_percent字段

• 修复重复发送K线订阅指令给服务器的bug

• 修复未订阅行情时回测不能立即结束的bug

• 完善测试用例

138 Chapter 11. 版版版本本本变变变更更更

TianQin Python SDK Documentation, Release 3.4.1

• 完善文档内容

1.2.0 (2019/11/21)

• 支持同时获取对齐的多合约 K线 (详见 get_kline_serial())

• 修复回测时未将非 TqSim账号转换为 TqSim的 bug

• 修复 wait_update()填写 deadline参数并等待超时后向服务器发送大量消息

• 完善测试用例

• 完善示例程序

• 完善文档内容

1.1.0 (2019/10/15)

• 增加时间类型转换的功能函数 (详见 tafunc())

• 修复与天勤连接时的一些bug

• 完善测试用例及测试环境配置

• 修改回测log内容,去除回测时log中的当前本地时间

• 完善文档内容

1.0.0 (2019/09/19)

• 修复: 各id生成方式

• 修复: 重复输出日志

• 修复: 命令行运行策略文件时,复盘模式下的参数返回值

• 添加持续集成功能

• 完善文档内容

0.9.18 (2019/09/11)

• 修复: 断线重连时触发的一系列bug

• 修复: register_update_notify以 klines作为参数输入时报错的bug

• 修复: 因不能删除业务数据导致的内存泄漏bug

• 部分修复: diff中的数据不是dict类型导致的bug

• 增加gui相关示例程序及文档

• 增加单元测试用例

• 完善文档内容

0.9.17 (2019/08/27)

• 修复: TqApi.copy()创建slave实例时工作不正常的bug

• 改进行情订阅信息同步到天勤的机制

• 改进TqSdk运行错误传递给天勤的机制

• 将TqApi的私有成员名字前加前缀下划线

• 增加各公开函数的返回值类型标注

• 支持使用email地址作为模拟交易账号

• 增强TargetPosTask及指标函数等内容的说明文档

139

TianQin Python SDK Documentation, Release 3.4.1

0.9.15 (2019/08/14)

• 调整tqsdk与天勤的连接机制

• 去除get_order()及get_position()等函数的返回值中与业务无关的"_path", "_listener" 数据, 使其只返回业
务数据

• 添加对公开函数输入值类型及范围的检查

0.9.9 (2019/07/22)

• 持仓对象 Position 增加了实时持仓手数属性 pos_long_his, pos_long_today, pos_short_his,
pos_short_today，这些属性在成交时与成交记录同步更新

• 修正 TargetPosTask因为持仓手数更新不同步导致下单手数错误的bug

• 取消交易单元机制

0.9.8 (2019/06/17):

• TqApi增加 copy函数，支持在一个进程中用master/slave模式创建多个TqApi实例

0.9.7 (2019/06/03):

• 修正持仓数据不能 copy()的问题

0.9.6 (2019/05/30):

• Quote, Account, Position, Order, Trade的成员变量名在IDE中支持自动补全(Pycharm测试可用)

• Order增加了 is_dead()属性 -用于判定委托单是否确定已死亡（以后一定不会再产生成交）

• Order增加了 is_online()属性 -用于判定这个委托单是否确定已报入交易所（即下单成功，无论
是否成交）

• Order增加了 is_error()属性 -用于判定这个委托单是否确定是错单（即下单失败，一定不会有
成交）

• Order增加了 trade_price()属性 -委托单的平均成交价

• Order增加了 trade_records()属性 -委托单的成交记录

• 文档细节修正

0.9.5 (2019/05/24):

• 加入期货公司次席支持,创建 TqAccount时可以通过 front_broker和 front_url参数指定次席服务器

0.9.4 (2019/05/22):

• 修正穿透式监管采集信息编码问题

0.9.3 (2019/05/22):

• (BREAKING)模拟交易默认资金调整为一千万

• 加入穿透式监管支持. 用户只需升级 TqSdk到此版本,无需向期货公司申请AppId,即可满足穿透式监管
信息采集规范要求.

0.9.2 (2019/05/07):

• 修正画图相关函数

0.9.1 (2019/04/15):

• (BREAKING) TqApi.get_quote, get_kline_serial, get_account等函数,现在调用时会等待初始数据到位后
才返回

• (BREAKING) k线序列和tick序列格式改用pandas.DataFrame

140 Chapter 11. 版版版本本本变变变更更更

TianQin Python SDK Documentation, Release 3.4.1

• 支持上期所五档行情

• 增加数十个技术指标和序列计算函数,使用纯python实现. 加入ta和ta_func库

• 加入策略单元支持. 在一个账户下运行多个策略时,可以实现仓位,报单的相互隔离

• 加强与天勤终端的协作，支持策略程序在天勤中画图,支持回测结果图形化显示与分析,支持策略运行
监控和手工下单干预

• 示例程序增加随机森林(random_forest)策略

• 示例程序增加菲阿里四价策略

0.8.9 (2019/01/21):

• 加入双均线策略

• 加入网格交易策略

• 数据下载器支持按交易日下载数据

• 修正模拟交易数据不正确的问题

• 修正回测时出现“平仓手数不足"的问题

2018/12/12:

• 加入直连行情交易服务器模式

• 模拟交易结束后输出交易报告

• 修正回测时账户资金计算错误的问题

2018/11/16:

• 加入策略回测功能

2018/10/25:

• 加入海龟策略

2018/10/17:

• 加入 dual thrust策略

• 加入 r-breaker策略

2018/08/30:

• 目标持仓模型(TargetPosTask)支持上期所的平今平昨和中金所禁止平今

• K线/Tick序列加入 to_dataframe函数将数据转为 pandas.DataFrame

• 加入 close函数用于退出时清理各种资源

• wait_update由设定超时秒数改为设定截止时间,并返回是否超时

• 加入调试模式，将调试信息写入指定的文件中

• 修正和某些开发环境不兼容的问题

• 规范了各业务数据的类型

• register_update_notify支持监控特定的业务数据

2018/08/10:

• 目标持仓Task自动处理上期所平今/平昨

• 主力合约加入 underlying_symbol字段用来获取标的合约

141

• 更新文档

142

	TqSdk 介绍
	TqSdk是什么
	系统架构
	功能要点
	编程风格
	License

	十分钟快速入门
	安装
	注册信易账户
	获取实时行情数据
	使用K线数据
	生成图形化界面
	交易账户, 下单/撤单
	构建一个自动交易程序
	按照目标持仓自动交易
	策略回测
	实盘交易
	模拟交易和论坛
	TqSdk 学习视频
	更多内容

	使用TqSdk
	策略程序结构
	信易账户
	合约, 行情和历史数据
	技术指标与序列计算函数
	账户与交易
	期权交易 & 交易所官方组合
	交易辅助工具
	策略程序回测
	策略程序图形化界面

	示例程序
	基本使用
	期权基本使用
	算法模块示例
	交易策略示例

	TqSdk 模块参考
	tqsdk.TqApi - 框架及核心业务
	tqsdk.TqAuth - 用户认证类
	tqsdk.TqAccount - 实盘账户类
	tqsdk.TqKq - 快期模拟交易类
	tqsdk.TqKqStock - 快期股票模拟交易类
	tqsdk.TqSim - 本地模拟交易
	tqsdk.TqSimStock - 本地股票模拟交易
	tqsdk.TqMultiAccount - 多账户
	tqsdk.objs - 业务对象
	tqsdk.lib - 业务工具库
	tqsdk.ta - 技术指标计算函数
	tqsdk.tafunc - 序列计算函数
	tqsdk.TqBacktest - 策略回测
	tqsdk.algorithm - 算法模块
	tqsdk.risk_rule - 风控类模块
	tqsdk.tools.DataDownloader - 数据下载工具
	tqsdk.exceptions - 抛出例外

	进阶主题
	高级委托指令
	批量回测, 参数搜索及其它
	交易策略的多实例运行
	与Gui库共同工作
	将程序信息推送到手机端
	TqSdk 与 vn.py 有哪些差别
	TqSdk与使用Ctp接口开发策略程序有哪些差别
	在无人监控环境下执行策略
	TargetPosTask 高级功能
	基于时间维度目标持仓策略
	在 TqSdk 中调用 TqSdk2 查询保证金

	参与TqSdk开发
	原则与规范
	TqSdk整体结构
	异步工具
	Web Gui
	策略回测框架
	单元测试

	TqSdk 专业版
	更稳定的行情服务器
	更多的实盘交易账户数
	策略回测功能
	股票行情
	股票模拟交易
	下载数据功能
	其他相关函数
	期权交易 & 交易所组合
	工作时间内的天勤客服支持

	TqSdk2 企业版
	TqSdk2 直连功能
	TqSdk2 连接资管平台功能

	天勤用户论坛
	版本变更

